
Delfos: the Oracle to Predict Next Web User’s Accesses

B. de la Ossa, J. A. Gil, J. Sahuquillo and A. Pont
Department of Computer Engineering, Polytechnic University of Valencia

Camino de Vera, s/n, 46022 Valencia (Spain)
berospe@doctor.upv.es, {jagil, jsahuqui, apont}@disca.upv.es ∗

Abstract

Despite the wide and intensive research efforts focused
on web prediction and prefetching techniques aimed to re-
duce user’s perceived latency, few attempts to implement
and use them in real environments have been done, mainly
due to their complexity and supposed limitations that low
user available bandwidths imposed few years ago. Nev-
ertheless, current user bandwidths open a new scenario
for prefetching that becomes again an interesting option to
improve web performance. This paper presents Delfos, a
framework to perform web predictions and prefetching on a
real environment that tries to cover the existing gap between
research and praxis. Delfos is integrated in the web archi-
tecture without modifying the standard HTTP 1.1 protocol,
and acts inserting predictions in the web server side, while
prefetchs are carried out by the client. In addition, it can
be also used as a flexible framework to evaluate and com-
pare existing prefetching techniques and algorithms and to
assist in the design of new ones because it provides detailed
statistics reports.

1 Introduction

A lot of research effort has concentrated on techniques to
improve the World Wide Web performance. Web caching
and prefetching have been proposed to reduce user’s per-
ceived latency. While caching techniques are widely used
in real environments, prefetching has been an interesting
subject for research but few attempts to use in real envi-
ronments can be found.

Prefetching techniques allow a web browser to request
an object before the user asks for it. Obviously, the web
browser must prefetch using accurate information in order

∗This work has been partially supported by Spanish Ministry of Edu-
cation and Science and the European Investment Fund for Regional Devel-
opment (FEDER) under grant TSI 2005-07876-C03-01 and by La Catedra
Telefonica de Banda Ancha e Internet (e-BA) from the Polytechnic Uni-
versity of Valencia.

to achieve reasonable performance that justifies the addi-
tional resources consumed (bandwidth, extra server load).

Prefetching can be done either by the web browser or
by a proxy. To this end, predictions need to be provided
in order to select the objects to prefetch. These predic-
tions can be performed by the web server as described in
most research works, but they can also be done by the web
browser [7] or by an intermediate, e.g., a proxy [11].

The limitations on the available user’s bandwidth con-
strained the benefits of prefetching in the past. This fact to-
gether with the difficulty of implementing these techniques
without introducing changes in the current protocols have
introduced a gap between academic results and available
products. But the current user’s bandwidth opens again new
possibilities for prefetching to improve web performance.

This paper presents Delfos, a predicting framework inte-
grated in a real web architecture, (i.e., the web server and
the web browser). Delfos is the Spanish name of Delphi,
the famous oracle of Apollo perched on the sides of Mt.
Parnassos where ancient Greeks went to know the future. It
implements prediction which is used to perform prefetch-
ing with no modification in the HTTP protocol, making it
suitable to use with current browsers, web servers and pro-
tocols. Delfos considers predictions done on the web server
side and prefetchs done on the client side, as current Gecko-
based web browsers do. It also provides detailed statistic
reports which permit to evaluate the performance of either
the prediction engine, the prefetching engine or both, help-
ing in the design of new and more efficient algorithms and
structures.

Intensive research work has been published focusing on
prediction and prefetching algorithms, but few of them in-
clude performance comparison results among the different
proposals by using simulation or emulation tools. The main
advantage of using these tools is their flexibility and speed
providing results. Unfortunately, simulators may present
significant result deviations since they are abstractions of
the real world. As a consequence, there is a need to develop
a tool in order to gather results when running prefetching al-
gorithms in real environments. Delfos also covers this lack

in web research topics.
In summary, the main contributions of this work are: the

design and implementation of a framework to perform effi-
ciently and easily web prefetching techniques, and to pro-
vide a flexible tool to evaluate and compare the performance
of these techniques under real conditions.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the related work. Section 3 presents and
gives details of our proposed framework. Section 4 presents
some experiments and working examples using Delfos. Fi-
nally, section 5 presents the concluding remarks.

2 Related work

In this section we make a brief review of some previ-
ous attempts to implement web prefetching techniques or to
evaluate their performance.

Below we discuss a representative subset of software
products with certain ability to perform web prediction or
prefetching. We grouped software products in three cate-
gories: servers, proxies and clients, as summarized on Table
1. Regarding web servers, only three products were found.

Kokku et al. [13] propose NPS, a system to perform non
interfering web prefetching. The system monitors the net-
work state and adapts the parameters of the prediction and
prefetching system to prevent saturation. It does not re-
quire modifications neither in the web browser nor in the
HTTP protocol since it includes specific JavaScript code in
the served pages to perform the actual prefetching. It does
not provide hints using HTTP standard headers, as it is pos-
sible nowadays. The learning process is done only in an
initial step.

The results provided by Google search sometimes in-
clude the first page of the list as a hint embedded in the
HTML code. If the web browser is capable of prefetching,
it may request that page in advance.

Domènech et al. [8] propose a free available framework
for prefetching, it is an hybrid implementation that com-
bines both real and simulated parts in order to provide flexi-
bility and accuracy. It implements state of the art prediction
algorithms to produce hints on the emulated web server. It
also emulates web clients that prefetch the objects and pro-
vides several performance results like precision, recall and
response time. This framework is very useful to test predic-
tion and prefetching algorithms, but it is not designed for a
real world usage.

There are several web proxies with prediction and
prefetching capabilities. Half of them (Wcol and Allegro-
Surf) prefetch all the hyperlinks of a html document, unnec-
essarily wasting bandwidth. This massive and indiscrim-
inate prefetching can be problematic, and has been criti-
cized by system administrators, web designers and users.
No information is available about the prediction algorithms

used in the other proxies, which leads to consider they use
a similar method. Packeteer SkyX Accelerator is a gateway
designed to accelerate connections in the local network us-
ing an undisclosed prefetching method. Viking Server is a
commercial product for Microsoft Windows operating sys-
tems that is supposed to include a proxy with prefetching
capabilities.

There are several products that provide prefetching ca-
pability to the end-user web client, but all of them use the
same method as the proxies do: prefetch all hyperlinks. In
this case, not only the web servers’ bandwidth is wasted un-
necessarily, but also the client’s one. The only exception
is Mozilla-based products, because they prefetch only the
hints provided by the web server during idle time.

Mozilla Firefox is a web browser with web prefetching
capacity. Other web browsers based on the same Mozilla
Foundation technologies include this capacity, for exam-
ple SeaMonkey Netscape, Camino, and Epiphany. Web
prefetching was first available in Mozilla Suite 1.2 (pub-
lished at the end of 2002). We use Mozilla Firefox in our ex-
periments since it already implements all the required fea-
tures regarding prefetching, it is widely used by both casual
and expert users, it is published with a free and open source
license and its full source code is also freely available.

Google Web Accelerator is a free web browser exten-
sion available for Mozilla Firefox and Microsoft Internet
Explorer on Microsoft Windows operating systems. It in-
cludes, among other features, web prefetching. It prefetchs
hints included in the HTML body, but also prefetchs all the
links in the pages being visited, even if no hints are pro-
vided.

FasterFox is an open and free extension for Mozilla web
browsers that prefetchs all of the links on the current page
during idle time.

PeakJet is a commercial product for the end user that in-
cludes several tools to improve the user access to the web.
It includes a web browser independent cache with prefetch-
ing capability, based either on history or on links, therefore
it can prefetch links on the current web page that were vis-
ited by the user sometime in the past or all the links on the
current web page.

Another commercial product for the end user that
prefetchs all the links in the page being visited, and store
the objects in the browser cache is NetAccelerator. It in-
cludes the possibility to refresh the cache content in order
to avoid obsolete objects.

Wei Zhang et al. [18] present the design and implementa-
tion of a modified Mozilla web browser with prediction ca-
pability that includes two prediction algorithms. The main
one is based on history and uses the Prediction by Partial
Matching algorithm (PPM) [17]. In the case this one pro-
vides few hints, another algorithm based on the page con-
tent is additionally used.

Table 1. Known software with prediction or prefetching capabilities
Type Name Description

NPS Non-interfering Web Prefetching System
Server Google Search Search results often embed hints on HTML

JosepDom Benchmarking framework (emulator-simulator)
Wcol Prefetchs all links

Squid-prefetch Prefetchs all links (small Perl script)
Proxy AllegroSurf Prefetchs all links

Paketeer SkyX Accelerator Prefetchs links
Robtex Viking Server Prefetchs links

Mozilla Used in our experiments
Google Web Accelerator Prefetchs all links in HTML

Client FasterFox Prefetchs all links in HTML
PeakJet 2000 Prefetchs all links or only previously visited

NetAccelerator Prefetchs all links
Personalized Mozilla Predicts and prefetchs based on history

In summary, most prediction or prefetching implementa-
tions are either proprietary or do not even attempt to imple-
ment a smart prediction algorithm. The remaining imple-
mentations are either not ready for usage on a real environ-
ment, or do not take into account both the web server and
the web client overload.

Regarding to prediction algorithms, different proposals
can be found in the research literature. They can be clas-
sified depending on the type of information gathered and
the data structure used for the prediction: object popular-
ity [14], Markov models [2, 16, 19], web structure [5], and
Prediction by Partial Matching [11, 17, 4].

But few research works have been addressed to compare
the performance between different prediction algorithms
mainly because the difficulty to reproduce environments
and workloads [7]. Two algorithms based on Markov mod-
els, proposed by Zukerman [19] and by Bestavros [2], are
compared in [1]. The comparison is only performed at the
algorithmic level, without considering details related to the
latency perceived by the user. Another work [3] compares
two algorithms, one based on the idea of popular objects
of Markatos [14] and another based on a variation of Pre-
diction by Partial Matching. These comparisons were done
from the point of view of the prediction and its precision,
and to the knowledge of the authors there is only a fair at-
tempt to compare them from the user’s perspective [9].

3 Delfos proposal

Delfos is a framework to perform prefetching in a real
system. Because its flexibility, it can also be used to de-
velop, test and evaluate prefetching techniques. The current
version of Delfos is integrated with Apache 2 web server
and Mozilla web browser, although any web server or web

Figure 1. Framework architecture

client is suitable to work with Delfos.
Fig. 1 depicts the framework architecture. It comprises

three main parts: the web client, the web server and the
prediction engine. The web client includes a web browser
with prefetching support (Mozilla) and a tool to capture
and replay web navigation sessions (CARENA, [15]). The
web server (Apache 2) includes a module (Mod-prefetch) to
query predictions and provide them to the web client. The
prediction engine (Eprefes) performs predictions and pro-
vides hints to the web server. Below we detail how these
parts work.

3.1 Mozilla Firefox

Mozilla is able to prefetch hints if they are included in
the response HTTP headers or embedded on the HTML
file [12]. This prefetching mechanism was first proposed
by Padmanabhan and Mogul [16], and standardized in
HTTP/1.1 RFC 2616. The web server can provide one or
more URIs if it considers that the user is likely to visit them
soon.

These URIs or hints can be provided in three different

ways:

• in a response HTTP header:

Link: <ch3.html>; rel=prefetch

• in a ‘meta’ tag on the HTML header:

<meta HTTP-EQUIV="Link"
CONTENT="<ch3.html>; rel=prefetch">

• in a ‘link’ tag on the HTML body:

<link rel="prefetch" href="ch3.html">

When implementing prefetch in Mozilla, some interest-
ing aspects concerning to what and when to prefetch must
be considered. Only the provided URIs using the HTTP
protocol are prefetched, without embedded objects. URIs
that contain parameters (the query part of the URI) will
not be prefetched. Prefetching will only occur when the
web browser is idle. Web requests sent by Mozilla when
prefetching include an additional HTTP request header, so
web servers can filter those requests, for example, in case
of overload. If the user clicks on a link while the browser
is prefetching, the prefetch process is interrupted to satisfy
the users’ real request. If there was any prefetching queue,
it will be discarded. The object partially downloaded will be
kept on cache and completed if the user demands it. Later,
when the browser is idle again, new hints can be prefetched.

3.2 Mod-prefetch for Apache 2

Mod-prefetch is a module for the Apache 2 web server
that request hints to the prediction engine and submits them
in the HTTP response headers to the web browser. See sec-
tion 3.3.2 for more information.

Fig. 2 shows the communication between Mod-prefetch
and the prediction engine. When the web server receives
a request from a web browser, Mod-prefetch establishes a
TCP socket connection to the prediction engine and sends
a message to it depending on the HTTP request: If it is a
standard GET request, Mod-prefetch sends a predict mes-
sage request. If the response includes hints, they are added
to the HTTP response headers as described in HTTP/1.1,
and sends them to the web client together with the rest of
the HTTP message.

3.3 Eprefes

Eprefes is a prediction engine designed to be used in a
real environment. It runs a prediction algorithm, gathers
statistics and listens for TCP connections. When it receives
a prediction request, it executes the prediction algorithm

and returns the resulting hints. This process has a minor
impact on the response time, being currently around 1 mil-
lisecond.

To verify Eprefes accuracy, experiments were run both
on it and on the simulator proposed by Domènech et al [8],
obtaining negligible deviations.

3.3.1 Features

The main features of Eprefes are: it is independent of the
web server, it can be controlled externally, it is modular,
different parameters of the modules can be reconfigured
dynamically and the code can be modified, compiled and
reloaded at runtime without restarting neither the entire en-
gine nor any module. Let’s discuss them in more detail.

Eprefes is independent of the web server that queries it
and the communication between both is by means of a TCP
socket. This design provides several advantages. The pre-
diction engine can be used with different models of web
server. It is only required to write a module for the new web
server that connects, queries and adds the hints to the HTTP
headers. The prediction engine and the web server can be
implemented on different languages. The web server and
Eprefes can be located in the same or in different machines,
which sometimes is preferable due to security, stability or
efficiency reasons. A single prediction engine may be capa-
ble of serving several web servers, and it is not required to
install it in all of them.

All the functionalities available in Eprefes are distributed
in different modules. Table 2 gives a general view of the
available modules and their purpose.

Most modules have configurable parameters, for exam-
ple, the maximum number of hints that can be provided as
response to a prediction request. They can be set not only in
the configuration file before start up, but can also be mod-
ified at runtime by other modules, i.e., a new module that
would allow to modify such parameters using a web inter-
face or shell commands which can be very useful for adap-
tive policies.

Runtime code swapping allows to add new functionali-
ties, improve performance, or fix bugs on the source code
and reload the newly compiled modules into memory with-
out restarting the server or missing the internal data.

3.3.2 Connectivity

mod-socket provides connectivity by using a TCP connec-
tion and binary format messages. When started, this module
opens a socket to listen for TCP connections in the con-
figured port number. Once a connection is established, it
creates a process that waits for requests. Each request will
be parsed and submitted to the mod-servemodule. The re-
sponse is conveniently packaged and sent back throughout
the TCP connection. The messages received include the

Figure 2. Communication between the web browser, the web server and the prediction engine

Subject Name Purpose
Connectivity mod-socket Listen for TCP connections

Serve requests mod-serve Manage requests depending on the request type
mod-trainer Optional. Read log files to train prediction algorithm

Statistics mod-stats Maintain variables and calculate performance indexes
mod-report Generate reports periodically

Prediction mod-palmen Make predictions using the Palpanas and Meldelzon’s algorithm (PPM)
mod-padmog Make predictions using the Padmanabhan and Mogul’s algorithm (DG)

Table 2. Modules in Eprefes

client IP address, timestamp, and object URI, MIME type
and file size. On the other hand, the response message is
simply a list of hints.

3.3.3 Serve requests

mod-serve manages each received request depending on the
message type, that can be a prediction, a prefetch or a fetch
request. If the message is a prediction request, it is redi-
rected to the prediction module that will answer with none,
one or several hints. Finally, the hints are sent back to the
calling module. Besides, these hints are also notified to the
statistics module.

mod-trainer is an optional module designed to provide
statistics when using web server log files as input for the
prediction engine instead of real web clients with prefetch-
ing capability. It intercepts the hints provided by the pre-
diction module and generates fictitious prefetch requests. If
the legitimate user later requests an object that was virtually
prefetched, the module intercepts this request and converts
it to a fictitious fetch request.

Currently, mod-trainer prefetchs all hints if the corre-
sponding objects are not on the client cache yet without
considering whether the client has idle time enough or not to
prefetch them. In a real scenario, browsers may not be able

to prefetch all the hints. As a consequence the results ob-
tained when using mod-trainer are optimistic and suppose
an upper bound.

3.3.4 Statistics gathering

mod-stats maintains variables and calculates performance
indexes that can be used for comparison purposes, e.g., to
evaluate the prediction accuracy and usefulness or the re-
sources consumed by the prediction algorithm. These data
are calculated and written to disk periodically without stop-
ping the process, so all statistics are avaliable immediately.

Some statistics available are: the received requests,
fetched objects, hints sent to the web server, objects that
were prefetched, prefetchs that were later fetched (prefetch
hits), hints that were later proved right (good predictions).
All these variables are measured both in number and byte
size.

Additionally, four performance indexes are calculated:
precision and recall measured both in number of objects and
size of objects [10].

Precision =
Prefetch_hits

Prefetchs
;Recall =

Prefetch_hits

User_requests

For all of them, the mean value and the confidence inter-

val is calculated. Performance indexes are measured us-
ing two methods. The standard one, called EXP, measures
the values from the beginning of the measurement session.
The method called INT calculates the indexes using only in-
formation of the last measurement interval. Proceeding in
this way, the evolution of the performance indexes is shown
without the interference of very old values.

mod-report generates periodic statistic reports provided
by the statistics module and writes them to data files for
later usage by specific tools such as Gnuplot.

3.3.5 Prediction algorithms

We have currently implemented the two prediction algo-
rithms more widely referred in the literature; Dependency
Graph (DG) proposed by Padmanabhan and Mogul [16]
and Prediction by Partial Matching (PPM) proposed by Pal-
panas and Mendelzon [17], on modules mod-padmog and
mod-palmen respectively.

These algorithms learn dynamically with each prediction
request, so a special training phase is not required, and this
information will be updated with posterior changes on the
web objects, web structure or users’ patterns. The predic-
tion algorithms include parameters to limit the growth of the
data structures.

mod-padmog implements the prediction algorithm De-
pendency Graph (DG) described by Padmanabhan and
Mogul [16]. It is based on a Markov model, and considers
that two objects are more related as more frequently they
are requested one after the other in a window containing the
last accesses for that same client.

mod-palmen implements the prediction algorithm pro-
posed by Palpanas and Mendelzon [17]. It is based on Pre-
diction by Partial Matching (PPM), a particular version of
Markov model algorithms.

3.4 Trainer

Prediction algorithms require a training process long
enough before being able to provide precise hints. We de-
veloped a program to train the prediction engine using log
files previously captured by the web server. In this way, it is
not necessary to wait until user’s accesses train the predic-
tion engine. The program can also be used for stressing and
benchmarking the prediction engine or for evaluation pur-
poses. Trainer is an optional tool which accepts trace files
in Common Log Format or Combined Log Format, both of
them are standard formats in web server software. Those
trace files are a set of time-ordered lines, being one line for
each HTTP request received by the web server. The infor-
mation of each line includes the web client IP address, the
object URI, the timestamp when the HTTP response is sent,
and the size of the requested object.

Trainer reads the trace file sequentially and sends mes-
sages to the prediction engine using the same communi-
cation method that the previously described Mod-prefetch
does. The provided hints are printed on screen and can be
written to a file, which permits to compare the results ob-
tained on different experiments.

Trace files are slightly converted before being parsed by
the Trainer. Additionally, trace files are filtered to select
the appropriate HTTP method (i.e., GET) and the HTTP re-
sponse code (i.e., 200 OK, 304 Not Modified and 206 Partial
Content).

3.5 CARENA

CARENA [15] is a Mozilla extension to capture and re-
play user navigation sessions. CARENA captures informa-
tion about the user session, which can be used later to replay
or mimic the gathered user navigation. CARENA emulates
the original user think times as these times are important to
obtain precise and reliable performance results. CARENA
is multiplatform, open source, lightweight, standards based,
easily installable and usable, programmed in JavaScript and
XUL. We use it to test the correct behaviour of Delfos.

4 Experimental results

The purpose of the experiments presented in this sec-
tion is to show how Delfos can implement prefetching tech-
niques and how it permits to evaluate the performance ob-
tained. Due to severe space restrictions, results shown in
this paper include only a very brief selection of the ones
obtained with Delfos, and using only the PPM prediction
algorithm. More results can be seen in the associated tech-
nical report [6].

To allow fair comparisons, Delfos was configured in the
same way through the different experiments. Common op-
tions are: maximum of 100 hints allowed on a HTTP re-
sponse, interval length of 100000 user requests and subin-
tervals length of 5000. Regarding mod-palmen (PPM) spe-
cific options: threshold 0.2, maximum order 1, minimum
order 1 (see section 3.3.5 for references). Previous work [9]
demonstrates that those values provide relatively good ratio
cost-benefit.

4.1 Performance indexes

In this section we show how Delfos can be used for per-
formance evaluation of prefetching techniques using trace
driven experiments. The PPM prediction algorithm was
used on the first experiment. It was configured to produce
reasonably good results. Our prediction engine can be fed
by a real web server that receives real requests from real
users. However, in order to compare the performance of

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

pr
ec

is
io

n
an

d
re

ca
ll

(%
)

userrequests (x 100.000)

precision per object
precision per byte
recall per object
recall per byte

Figure 3. Precision and precision per byte, re-
call and recall per byte

prediction algorithms with different configurations, a repro-
ducible workload must be used.

In the remaining experiments the prediction engine re-
ceives requests from a special trainer program that reads
preprocessed web server logs. The module mod-trainer
(described on 3.3.3) is enabled to generate prefetchs based
on the predictions and hits based on the real user requests
logged. Those results were obtained using the particular be-
haviour of mod-trainer, therefore they are an upper bound
of the results expected in real world conditions. An experi-
ment with five million user requests takes around ten hours
to complete on a standard PC (Intel Pentium 4 3.4 GHz,
6800 bogomips, 1 GB of RAM).

The length of the experiments is measured in processed
user requests. The trace file was logged in combined log
format by an Apache 2 serving the web site of School of
Computer Science from the Polytechnic University of Va-
lencia. The trace file used on those experiments includes
five million user requests, starts on October, 1st 2005 and
ends on March, 23th 2006, it contains on average 26000
user requests per day, 15000 different objects requested, 50
gigabytes transfered in total, 285 megabytes transfered per
day in average, and no previous training phase was used.

Fig. 3 shows the evolution of the precision and the recall,
both of them measured per object and per byte. Decreasing
the prediction algorithm’s threshold increases the prediction
(and hence the prefetching) aggressiveness, which also in-
creases the cost in bandwidth usage, and also the benefit
in latency reduction. Since no training phase was used, the
confidence intervals are considerably large at the beginning,
but decrease slowly and consistently over the experiment.
As this figure shows, the possibility to see not only average
values but also confidence intervals helps to detect transi-
tional phases.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 5 10 15 20 25 30 35 40 45 50

M
by

te
s

userrequests (x 100.000)

tries
contexts

last accesses

Figure 4. Memory consumed by mod-palmen
data structures

4.2 System statistics

In addition to the performance indexes, Delfos allows
the modules that implement prediction algorithms to report
statistics that may be interesting on each case, for exam-
ple, those related to data structures: number of registers on
a database table, nodes and arcs on a graph, total memory
consumption, etc.

Fig. 4 shows total memory consumption of data struc-
tures on the experiment using PPM. Memory consumption
is important in real world implementations, since an algo-
rithm providing great precision and recall may not be suit-
able for real world conditions if it has high memory require-
ments or computation requirements.

Other system statistics of interest to evaluate the re-
source consumption are the number of database operations
required for the prediction, and the prediction service time.
For algorithms based on a tree data structure (like PPM), it’s
possible to measure values like the mean number of children
on a tree. On Markov-based prediction algorithms like mod-
padmog (DG) it is possible to measure values like the total
number of arcs and nodes, mean nodes occurrence, mean
arcs occurrence, and mean arcs probability.

Delfos can be used to discover new insights into
prefetching thanks to the detailed statistics. As an exam-
ple, let’s briefly observe the relation between performance
indexes and resource consumption (memory and CPU). The
figures show that data structures are still growing when the
experiments end. Instead, performance indexes like preci-
sion and recall were mostly invariant during the last part
of the experiments. This means that the prediction algo-
rithm did not improve performance indexes after an initial
learning phase. Allowing unlimited learning and size of
data structures did not improve precision nor recall, but data
structures grew, making the algorithm slower.

5 Conclusions

In this paper we presented Delfos, a framework that pro-
vides web prefetching capabilities in real environments. To
the knowledge of the authors, it is the first implementation
for real usage that features smart prediction algorithms and
provides hints using the method described on HTTP 1.1.
Delfos is also a flexible tool that can be used either for re-
search purposes or performance evaluation analysis.

Concerning to its usage in real environments, the pre-
diction engine is an independent program that connects to
the web server to provide hints, and a module for Apache 2
is available for this purpose. Mozilla web browser is used
since it already includes the required support for prefetch-
ing. An important novelty of the proposed framework is that
it does not require any modification in the standard HTTP
1.1 protocol.

In order to make it useful and suitable for research and
performance evaluation, it provides detailed statistic reports
and allows easy implementation and replacement of predic-
tion algorithms, since they are isolated on independent mod-
ules in the prediction engine. Statistics include both perfor-
mance indexes like precision and recall (both per byte and
per object) and resource utilization.

Acknowledgments

The authors would like to thank the technical staff of the
School of Computer Science from the Polytechnic Univer-
sity of Valencia (www.ei.upv.es) for providing us recent and
customized trace files logged by the web server from that
school web site.

References

[1] D. Albrecht, I. Zukerman, and A. Nicholson. Pre-sending
socuments on the www: A comparative study. Proceedings
of the 16th International Joint Conference on Artificial In-
telligence, Stockholm, Sweden, 1999.

[2] A. Bestavros. Using speculation to reduce server load and
service time on the www. Proceedings of the 4th ACM Inter-
national Conference on Information and Knowledge Man-
agement, Baltimore, USA, 1995.

[3] C. Bouras, A. Konidaris, and D. Kostoulas. Predictive
prefetching on the web and its potential impact in the wide
area. World Wide Web: Internet and Web Information Sys-
tems, 7, Kluwer Academic Publishers, The Netherlands,
2004.

[4] X. Chen and X. Zhang. Popularity-based PPM: An effective
web prefetching technique for high accuracy and low stor-
age. Proceedings of the 2002 International Conference on
Parallel Processing, Vancouver, Canada, 2002.

[5] B. D. Davison. Predicting web actions from html content.
Proceedings of the 13th ACM Conference on Hypertext and
Hypermedia, College Park, USA, 2002.

[6] B. de la Ossa, J. A. Gil, J. Sahuquillo, and A. Pont. Delfos:
the oracle to predict next web user’s accesses. Technical
Report available at http://www.gii.upv.es/web_architecture/,
Dept. of Computer Engineering, Polytechnic University of
Valencia, Spain, 2007.

[7] J. Domènech, J. A. Gil, J. Sahuquillo, and A. Pont. Web
prefetching performance metrics: A survey. Performance
Evaluation, 63(9-10):988–1004, 2006.

[8] J. Domènech, A. Pont, J. Sahuquillo, and J. A. Gil. An
experimental framework for testing web prefetching tech-
niques. In 30th EUROMICRO Conference, pages 214–221.
IEEE, 2004.

[9] J. Domènech, A. Pont, J. Sahuquillo, and J. A. Gil. Cost-
benefit analysis of web prefetching algorithms from the
user’s point of view. In Proceedings of the 5th Inter-
national IFIP Networking Conference, Coimbra, Portugal,
May 2006.

[10] J. Domènech, J. Sahuquillo, J. A. Gil, and A. Pont. About
the heterogeneity of web prefetching performance key met-
rics. Proceedings of the 2004 International Conference
on Intelligence in Communication Systems (INTELLCOMM
04), Bangkok, Thailand, November 2004.

[11] L. Fan, P. Cao, W. Lin, and Q. Jacobson. Web prefetch-
ing between low-bandwidth clients and proxies: Potential
and performance. In Proceedings of the ACM SIGMET-
RICS Conference on Measurement and Modeling Of Com-
puter Systems, pages 178–187, Atlanta, USA, 1999.

[12] D. Fisher and G. Saksena. Link prefetching in mozilla: A
server driven approach. In Proceedings of the 8th Interna-
tional Workshop on Web Content Caching and Distribution
(WCW 2003), New York, USA, 2003.

[13] R. Kokku, P. Yalagandula, A. Venkataramani, and
M. Dahlin. Nps: A non-interfering deployable web prefetch-
ing system. In Proceedings of the USENIX Symposium on
Internet Technologies and Systems, Palo Alto, USA, 2003.

[14] E. Markatos and C. Chronaki. A top-10 approach to
prefetching on the web. Proceedings of INET ’98, Geneva,
Switzerland, 1998.

[15] I. J. Niño, B. de la Ossa, J. A. Gil, J. Sahuquillo, and
A. Pont. CARENA: A tool to capture and replay web nav-
igation sessions. In Proceedings of the Third IEEE/IFIP
Workshop on End-to-End Monitoring Techniques and Ser-
vices (E2EMON’05), Nice, France, May 2005.

[16] V. Padmanabhan and J. C. Mogul. Using preditive prefetch-
ing to improve world wide web latency. Proceedings of the
ACM SIGCOMM’96 Conference, Palo Alto, USA, 1996.

[17] T. Palpanas and A. Mendelzon. Web prefetching using par-
tial match prediction. Proceedings of the 4th International
Web Caching Workshop, San Diego, USA, 1999.

[18] W. Zhang, D. B. Lewanda, C. D. Janneck, and B. D. Davi-
son. Personalized web prefetching in mozilla. Technical Re-
port LU-CSE-03-006, Dept. of Computer Science and Engi-
neering, Lehigh University, Bethlehem, USA, 2003.

[19] I. Zukerman, D. W. Albrecht, and A. E. Nicholson. Predict-
ing users’ requests on the www. In UM ’99: Proceedings
of the seventh international conference on User modeling,
pages 275–284, Secaucus, NJ, USA, 1999. Springer-Verlag
New York, Inc.

	1 Introduction
	2 Related work
	3 Delfos proposal
	3.1 Mozilla Firefox
	3.2 Mod-prefetch for Apache 2
	3.3 Eprefes
	3.3.1 Features
	3.3.2 Connectivity
	3.3.3 Serve requests
	3.3.4 Statistics gathering
	3.3.5 Prediction algorithms

	3.4 Trainer
	3.5 CARENA

	4 Experimental results
	4.1 Performance indexes
	4.2 System statistics

	5 Conclusions

