
Dynamic storage allocation for real-time embedded systems∗

M. Masmano, I. Ripoll, and A. Crespo
Universidad Politécnica de Valencia, Spain.
{mmasmano,iripoll,alfons}@disca.upv.es

Abstract
Dynamic memory allocation DSA algorithms have

played in important role in the modern software engi-
neering paradigms and techniques (as object oriented
paradigm). Additionally, its utilization allows to in-
crease the flexibility and functionalities of the applica-
tions. There exists in the literature a large number of
works and references to this particular issue. However,
in the real-time community the use of dynamic memory
techniques has been not considered as an important issue
because spatial and temporal worst case for allocation
and deallocation operations were insufficiently bounded.
It is significant the reduced number of papers about this
topic in the more relevant real-time events.

Considering these reasons new dynamic storage allo-
cator DSA algorithms with a bounded and acceptable
temporary behavior must be developed to be used by
RTOS. On this paper a new DSA algorithms called Two
Level Segregated Fit (TLSF), developed specifically to be
used by RTOS, is introduced and compared with other
previously proposals.

1 Introduction

The study of dynamic storage allocation (DSA) algo-
rithms has been an important topic in the operating sys-
tems research and implementation and has been widely
analysed. Wilson et al. [7] wrote an excellent sur-
vey/tutorial of the research about storage allocation
done between 1961 and 1995. Due to the large amount
of existing DSA algorithms and studies, the reader can
get to think that the problem of dynamic memory al-
location has been already solved. This can be true in
most applications types, however the situation for the
real time applications is quiet different.

In real-time systems it is needed to know in advance
the operation bounds in order to analyse the system.
The dynamic memory allocation operations lack of a
sufficient bounds to provide efficient support to the ap-
plications which means that the time required to allo-
cate and deallocate memory are both unpredictable .
Additionally, the dynamic memory management can in-
troduce an important memory fragmentation that can
generate unreliable service when the application runs
for large period of time. It is important to point out

that a fast response and high thoughtput are important
characteristics that has to be taken into account in any
systems, and in particular in a RTS. But the main char-
acteristic that defines a RTS is to guarantee the timing
constrains.

Most of the DSA algorithms were designed to provide
fast response time for the most probable case achieving
a good overall performance, although the worst case can
be high. For these reasons, most RTOS developers and
researchers avoid the use of dynamic memory at all, or
use it in a restricted way, for example, only during the
system startup [6].

This paper presents a new algorithm for dynamic
memory alocation that tries to solve the problem of the
worst case bound maintaining the efficiency of the allo-
cation and deallocation operations. Also, the fragmen-
tation problem is improved enougth to be used in real-
time systems running for long time. Section 2 presents a
review of the requirements that should be fulfilled by the
dynamic memory allocation algorithms for real-time ap-
plications. Section 3 analyses some of the most relevant
DSA implementations used in real-time and non-real-
time environments. In section 4, the design guidelines
of the proposed DSA are presented. The propossed al-
gorithm is outlined in section 5.

2 Real-Time requirements

One of the key issues in real-time systems is the schedu-
lability analysis to determine whether the timing con-
straints will be satisfied at run-time or not. Regardless
of which analysis and scheduling techniques are used, it
is essential that the real-time designer be able to deter-
mine the worst-case execution time of all the activities
involved in the application. Moreover, real-time applica-
tions run for large periods of time. During its operation,
memory can be allocated and deallocated many times
which aggravates the memory fragmentation problem.

Considering these aspects, the requirements of real-
time applications regarding dynamic memory can be
stated as follows:

Bounded response time. The WCRT has to be
known a priority and, if possible, be independent of ap-
plication data. This is the main requirement the must
be meet.

∗This work has been supported by the European Commision project: IST-2001-35102(OCERA) http://www.ocera.org.

1

Fast response time. Although having a bounded
response time is a must, the response time has to be
fast to be usable. A bounded DSA algorithm which is
10 times slower than a conventional one, is not practical.

Memory requests have to be always satisfied.
In non-real time systems applications can receive a null
pointer or are just killed by the OS when the system
runs out of memory. It is obvious that is not possible to
always grant all the memory requested. But the DSA
algorithm has to minimise the chances of exhausting
the memory pool by minimising the fragmentation and
wasted memory.

Although there is large range of real-time systems
with different memory constraints and hardware sup-
port, the study presented in this work in progress is fo-
cussed on embedded systems where memory is a scarce
resource and there is no MMU support.

3 DSA in real-time systems

This section analyses some of the most relevant DSA
available implementations used in real-time and non-
real-time environments. A comparison with other im-
plementations (like QNX, Lynxs, or VxWorks) were not
possible because that code is not public or only released
under non-disclosure agreements.

3.1 Doug Lea implementation

Doug Lea’s allocator [4] is one of the most used allo-
cators, both in standard applications and in real-time
systems (eCos, glibc, etc.). M.S. Johnstone and P.R.
Wilson [2] concluded that it is an excellent allocator in
relation to fragmentation; and widely considered to be
among the best uniprocessor allocators [1].

Doug Lea’s allocator is an implementation of several
strategies combined to provide good performance in sev-
eral parameters: speed, space-conserving, portability,
block locality and tunable. It uses different strategies
depending on the size of the requested blocks. Also, it
is important to note that free blocks are immediately
coalesced.

This algorithm has some limitations that make it not
suitable in real-time systems. It focusses optimisations
on most used block sizes (from 16 to 512 bytes) using
a fine grain (8 bytes) segregated fit structure; but for
larger blocks, it implements a simple free list with best-
fist search, which can degenerate in lengthy searches
along a simple linked list. One important area where
this allocator do not perform well is with network or disk
drivers that work with medium size blocks. Although it
do not provides the required performance for real-time
applications, this implementation has been widely used
and studied, and it is considered as one of the best al-
locators.

3.2 BGET

This a portable and customisable implementation of the
first-fit and best-fit strategies, the strategy used is se-
lected via conditional compilation. It was written in
1972 and used in a wider range of application from small
embedded systems to large mainframes. When bget is
initialised, it is possible to register several user call back
functions that the allocator can call to compact, grow
and shrink the managed memory pool.

As expected, when BGET is compiled to use first-fit
strategy it provides a good mean execution time un-
der real workloads. But the worst case execution time
depends on the size of the memory pool, which is not
acceptable for real-time systems.

3.3 RTEMS

RTEMS is a real-time executive which provides a high
performance environment for embedded applications.
RTEMS is a full featured but small and compact RTOS.
The DSA policy used in RTEMS is the first-fit, im-
plemented using a single linked list. It never coalesce
blocks, that is, free blocks are just inserter into the free
list. It uses the system facility sbrk() to enlarge the
memory poll.

3.4 Half-Fit

Proposed by T. Ogasawara [5] this algorithm is the only
DSA designed –known by the authors– to fulfil the spe-
cific requirements of real-time systems. It is based on
segregated lists, where the lists are power of 2. It also
suggests the use of advanced bit instructions (“find first
bit set” FFS() that are available on most modern proces-
sors and libraries) to find in constant time the best free
queue to allocate the requested block. The asymptotic
complexity of the malloc() function is O(1).

Deallocated blocks are immediately coalesced, there-
fore in the worst case, the free() function will merge
tree block (current block with physically previous and
next blocks). Although the asymptotic complexity of
the free() function is constant, the free function per-
form more operations and the time host is higher than
the malloc function.

4 TLSF strategy

As described before, there is not a single DSA algorithm
suitable for all application types. As already stated,
real-time applications are quiet different from conven-
tional applications. This sections analyses how real-
time applications requirements determined the design
of TLSF to fullfill most of their requirements.

Real-time applications requirements:
• Bounded response time.
• Fast response time.
• Bounded fragmentation.
• Low fragmentation.

2

Characteristics of the hardware used in embedded sys-
tems:
• Small amount of memory.
• No special hardware (MMU) available to support

virtual memory.
In order to meet these constrains and requirements

the TLSF was designed following the next guidelines:
Immediate coalescing: As soon as a block of mem-

ory is freed, TLSF will immediately merge it with adja-
cent free blocks, if any, to buildup a larger free block. Al-
though delayed coalescing can improve the performance
of the allocator, it adds unpredictability (a block re-
quest may require to merge a unbounded number freed
but not merged blocks) and also increases amount of
fragmentation. Therefore, deferred coalescing can not
be used in real-time.

Splitting threshold: The smallest block of memory
allocated is 8 bytes. By limiting the minimum block size
to 8 bytes, it is possible to store inside the free blocks
the information needed to manage free block, therefore
optimising the memory usage. The list of free blocks is
stored inside the same free memory blocks.

Good-fit strategy: TLSF will return the smallest
chunk big enough to hold the requested block. Since
most applications only use a small range of sizes, best-
fit tend to produce the least fragmentation on real loads
compared to other general approaches such as first-fit
[7, 2]. Also, a best-fit (or an almost best-fit, also called
good-fit) strategy can be implemented in a efficient and
predictable way using segregated free lists. On the other
hand, other strategies like first-fit or next-fit are difficult
to implement with a predictable algorithm. Depending
on the request sequence, a first-fit strategy can degen-
erate in a long sequential search in a linked list. TLSF
implements a good-fit strategy, that is, it uses a large
set of free lists, where each list is a non-ordered list of
blocks between the size class and the next size class.

No reallocation: It is assumed that the original
memory pool is a single large block of free memory, and
no sbrk() function is available.

Same strategy for all block sizes: The same allo-
cation strategy and policy used for any requested size.

Memory is not cleaned-up: Neither the initial
pool nor the free blocks are zeroed. It is assumed that
TLSF will be used in a trusted environment, where ap-
plications are written by well intended programmers.
Therefore, initialising the memory introduces overhead
with a useless feature. The programmer has to initialise
all the data he allocates, as good programming practices
recommends.

5 TLSF structure

TLSF uses a segregated fit mechanism to implement
a good-fit policy. The basic segregated fit mechanism
uses an array of free lists, with each array holding free
blocks within a size class. In order to speedup the ac-
cess to the free blocks and also to manage a large set

of segregated lists (to reduce fragmentation) the array
or lists has been organised as a two level array. The
first-level array divides free blocks in classes that are a
power of two apart (8, 16, 32, 64, etc.); and the second-
level sub-divides each first-level class linearly, where the
number of divisions (SLI) is a user configurable param-
eter. Each array of lists has an associate bitmap used
to mark which lists are empty and which ones contain
free blocks. Information regarding each block is stored
inside the block itself.

Figure 1: TLSF free data strcuture overview.
In order to coalesce easily free blocks, the TLSF em-

ploys the boundary tag technique proposed by D. Knuth
in [3] which consists on adding a footer field to each free
or used block which is a pointer that points to the start
of the same block. When a block is freed the footer
of the previous block (which is located one word before
the freed block) is used access the head of the block to
check whether it is free or not and merge both block
accordingly.

Therefore, each free block is linked in two double
linked lists: the segregated list with hold the blocks be-
longing to the same size class, and a list ordered by
physical size.

6 Algorithm description

Most TLSF internal operations relay on the
segregate list() mapping function which given the
size of a block calculates the indexes of the two arrays
that points to the corresponding segregate list.

segregate list (size) =
{

f := blog2 (size)c
s :=

(
size − 2f

)
SLI
2f

This function can be efficiently implemented using
shift and search bit instructions (available in most mod-
ern processors) and exploiting numerical characteristics.
The first level index (blog2 (size)c) can be computed as
the position of the last bit set (bit set to one) of the
size. The second level index can be obtained using a
mask on the first SLI bits of the size that follow the last
bit set. For example, supposing a SLI=4 and given the

3

size 460, the first level index is f=8 and the second and
the second level index is s=12:

size = 460d =
15
0

14
0

13
0

12
0

11
0

10
0

9
0
f=8
8

1
7
1

6
1

5
0

4
0︸︷︷︸

s=12

3
1

2
1

1
0

0
0b

This function gives a constant time search (O(1)) in
the TLSF structure.

The internal operations provided by TLSF required
to implement malloc and free functions are:

Get a free block: This function returns a pointer to
a free block of the required size or bigger. The request
size is rounded up to the nearest free list and the search
sequence is as follows:

1.- calculate the “f” and “s” indexes (using the map-
ping function) which are used to get the head of the
free list holding the closer class list. If this list is not
empty then the block at the head of the list is removed
from the list (marked as busy) and returned to the user;
otherwise,

2.- search the next (bigger than the requested size)
non empty list in the TSLF structure. This search is
done in constant time using the bitmap masks and the
find first set (ffs) bit operation. If a list is found, then
the block at the head of the list will be used to fulfil the
request. Since this block is bigger than which was re-
quested it is split and the remaining left is inserted into
the corresponding free list. If no bigger block is found,
then

3.- the memory is taken directly from the memory
pool. If there is not enough memory in the pool, then
the allocator just fails due to memory exhaustion.

Insert a free block: The mapping function is used
to calculate the “f” and “s” indexes to find the class list
where the block has to be inserted.

Coalesce blocks: Using the boundary tag technique
the head of the previous block is consulted to check
whether it is free or not. If the previous block is free
then the block is removed from the segregated list and
merged with the current block. The same operation is
carried out with the following physical block.

Using these internal operations, the malloc and free
functions are implemented with a O(1) time. On the
other hand, exact layout of the TLSF data structure
has been designed to enhance cache and TLB locality.

7 Results and conclusions

Figure 2 show the preliminary results of a comparison
between Douglas Lee, BGET and TLSF. Time has been
measured using the tsc register (i386) which is a counter
incremented on every processor clock cycle. The test
code used to produce this plot is:

for (x=32; x<10*1024; x+=32){
start=time();malloc(x);end=time();
y=end-start;

}

As can bee seen, TLSF is always below 1000 cpu ticks.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
P

U
 C

yc
le

s

Block Size

TLSF
BGET

DL Malloc

Figure 2: Comparative test
The first comparative tests are quiet encouraging, and

new algorithms are under study using MMU support.
The new versions will be freely available at the OCERA
web site.

References

[1] Emery D. Berger, Benjamin G. Zorn, and Kathryn S.
McKinley. Composing high-performance memory al-
locators. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 114–
124, 2001.

[2] M.S. Johnstone and P.R. Wilson. The Memory Frag-
mentation Problem: Solved ? In Proceedings of the
International Symposium on Memory Management
(ISMM’98), Vancouver, Canada. ACM Press, 1998.

[3] D.E. Knuth. The Art of Computer Programming,
volume 1: Fundamental Algorithms. Addison-
Wesley, Reading, Massachusetts, USA, 1973.

[4] D. Lea. A Memory Allocator. Unix/Mail, 6/96,
1996.

[5] T. Ogasawara. An algorithm with constant execu-
tion time for dynamic storage allocation. 2nd In-
ternational Workshop on Real-Time Computing Sys-
tems and Applications, page 21, 1995.

[6] I. Puaut. Real-Time Performance of Dynamic Mem-
ory Allocation Algorithms. 14 th Euromicro Confer-
ence on Real-Time Systems (ECRTS’02), page 41,
2002.

[7] P. R. Wilson, M. S. Johnstone, M. Neely, and
D. Boles. Dynamic Storage Allocation: A Survey
and Critical Review. In H.G. Baker, editor, Pro-
ceedings of the International Workshop on Mem-
ory Management (IWMM’95), Kinross, Scotland,
UK, volume 986 of Lecture Notes in Computer Sci-
ence, pages 1–116. Springer-Verlag, Berlin, Ger-
many, 1995.

4

