‘ Dynamic Memory Management for
Embedded Real-Time Systems

Alfons Crespo, Ismael Ripoll and Miguel Masmano

Grupo de Informatica Industrial — Sistemas de Tiempo Real
Universidad Politécnica de Valencia
Instituto de Automatica e Informatica Industrial

http:/lwww.gii.upv.es

[outline

m Introduction

m Basic concepts

s DSA requirements for real-time systems
m Allocator classification

m TLSF description

m Evaluation

~ m Conclusions

Introduction

s Nowadays embedded systems are used in a wide
range of industrial sectors requiring appropriate
functionalities.

s The main advantages of embedded systems are
their reduced price and size, broadening the
scope of possible applications, but the main
problem for their use is the limited computational
capabilities they can offer.

m Optimal use of the resources is an important
~Issue

Introduction

= Dynamic memory management or Dynamic
Storage Allocation (DSA) is one part of the software
system that influences the performance and the cost
of a product the most.

m [he system must be optimized due to the limitation
of memory.

~ m Real-time deadlines must be respected: the dynamic
~ memory management system must allocate and
deallocate blocks in due time.

Introduction

s But there is a general misunderstanding of the use of
Dynamic Memory Allocation

o It is not used In real-time systems
o Other techniques (ad-hoc) have been used

m It is mostly forgotten in QoS techniques

o Processor, Network, Energy,
= Applications

o Multimedia systems

o Mobile phones

o Applications using Al techniques

m Languages: Java, RTJava

Misunderstandings about DSA

1. Long running programs will fragment the heap more
and more, consuming unbounded memory.

2. Memory request operations (malloc / free) are
inherently slow and unbounded

3. It is usually better to implement your own ad-hoc
memory allocator than use a known allocator

- Consequence: It is not used in real-time systems

B D

Dynamic Memory and RT Systems

s Currently, RT-Systems do not use explicit dynamic
memory because
o Allocation response time is either unbounded or very long

o The fragmentation problem

s However, currently, several factors such as RTJava, the
existence of more and more complex applications will

force the use of dynamic memory

Explicit Dynamic Memory Management

s Dynamic memory allocation consists in managing, in
execution time, a free area of memory (heap) to satisfy a
sequence of requests (allocation/deallocation) without
any knowledge of future requests

m This is an on-line optimisation problem: “space
optimisation”

s Competitive analysis — it is not possible to design an

optimum algorithm

m There exist many memory allocators (First-Fit, Best-Fit,
Binary-Buddy, etc) (Robson, 80) The off-line version of
the problem is NP-Hard

Basic concepts

4+ Task

malloc

Memory pool / Heap

Buffer

free

" Task

- Allocated blocks
Basic concepts

Memory pool / Heap

malloc

4+ Task

Buffer

free

" Task

Basic concepts

Fragmentation: the
inability to reuse
memory that is free

or

the amount of wasted

memory at a “steady
state”

Allocated blocks

Memory pool / Heap

Basic concepts

Fragmentation:

There are two sources of
wasted memory:

e internal fragmentation

« external fragmentation

Allocated blocks

Memory pool

Basic concepts
Memory pool

Finding free blocks: M
- best fit: extensive
search

- good fit: find a free
block near the best.

Allocated blocks

Requirements for DSA

s Bounded response time. The worst-case execution
time (WCET) of memory allocation and deallocation
has to be known in advance and be independent of
application data.

m Fast response time. Besides, having a bounded
response time, the response time has to be fast
enough to be usable.

= Memory requests need to be always satisfied

-~ through an efficient use of memory. The allocator
has to handle memory efficiently, that is, the amount
of wasted memory should be as small as possible.

B A

Policy

Allocation

— First-fit

— Best-fit

— Good-fit

— Next-fit

— Worst-fit
Deallocation

— Immediate coalescence
— Deferred coalescence

— No coalescence

Allocators classification

Mechanism

Sequential fits (linked lists)

Segregated lists (set of free
lists)

Buddy systems (Segregated
free lists)

Indexed structures (AVL,
Cartesian trees)

Bitmaps

Several mechanisms
(bitmaps + segregated list)

‘ Selected Dynamic Memory Allocators

s Reference algorithms
o First-Fit and Best-Fit

m Labelled as RT-Systems allocators
o Binary Buddy

s Widely used allocators
a0 Doug Lea’s malloc (DLmalloc)

= Designed for RT-Systems

o Half-Fit and TLSF

I e

Most used/known allocators

Allocation Deallocation

Allocator Policy Policy Mechanism
First-fit First fit Immediate coalescence Linked List
Best-fit Best fit Immediate coalescence Linked List
Binary-buddy Best fit Immediate coalescence|] Buddy systems
AVL Best fit Immediate coalescence Indexed Lists
DLmalloc |<512b Exact fit No coalescence Bitmaps

= 512b Best fit Deferred coalescence Linked List
Half-fit Good fit Immediate coalescence| > 2PS +Ii§tegregated
TLSF Good fit Immediate coalescence ElimEs +”§te YregeliEe

‘ Worst /Bad Case Costs

Allocator Allocation Deallocation
First-fit/Best-fit O(M/(2-n)) O(l)
Binary-buddy O(log,(M/n)) | O(log,(M/n))
DLmalloc O(M/n) O(1)

AVL O(2.44-log,(M/n))| O(4.32-log,(M/n))
Half-fit/ TLSF O(1) O(1)

M: Maximum memory size (Heap)
n: Largest allocated block

B A

‘ TLSF Design

s TLSF (Two Level Segregated Lists)

s TLSF was designed and implemented in the EU project
OCERA (Open Components for Real-Time Embedded
Applications) (http://www.ocera.org)

m It performs inmediate coalescense of free blocks
m Uses Segregated list & bitmaps
m Uses the Good fit policy

‘ TLSF Design

m Uses Segregated list & bitmaps

~ Free N .

" Blocks ~ Second Level Directory 0000700

; | ' 0[0[0[0[0]O]

| | \0\0/\1/\0\0\0\

» 007000100

| [480.511] | [448.479] | [416.447) [384.4157 | [352:383] [320.351] //[588..3;1/9] [255.287]
:‘ [240.255] | [224.239] | [208.223] | [192.207] [176..191] | [160..175] | [144..159] | [128..143]
i - 7 ;.)

! s B /

| [120.127] | [112.119] | [104..111]| [96.103] | [88.95] | [80..87] ‘/’[72..79] [64.71]
’ O / /

3 .

?‘ C[60.64] | [56.59] | [52.55] | [48.51] | [44.47) | [40.43] | [36.39] | [32.35]

% M

B A

Implementation issues

s Two configuration parameters (/, J)

a ' 2 maximum block size

a J: 2Y number of second level
lists

m Each set of list have associated a
bitmap

o Bitmap search using bit search
forward and reverse (bsf y bsr
in IA32)

List (i, j) has blocks in the range

(164, 128

'/31'30 29 -

2 1 0
lo/o|o]..]o]o]o0]|

31 30 29 -

DoleTeleli Tele]s]

=2 1 0
. |0]0]0]..[]0]0]0O
Lele]

31 30 29 2 1.0

lo/o|o]..]1]0]0]

(iJ)=12'+j-27 2 +(j+1)-27[

o Ex:. J=5, the list (i: 10, j: 5) has blocks of size in range [1084, 1216]

Implementation issues

m Two translation functions are provided
o Search : returns the first list in the range higher or

equal tor

search(r)

3

;. g+ bl)

(o0 o)

o Insert: return the list which range includes r

insert(r) {i Llog 5 ()] }
o

jolr-27)C

. v.9

Evaluation

m \Worst / Bad Case Execution Time

0 Specific scenarios to achieve the worst or bad case
and measure it (cycles and number of instructions)

m Synthetic loads (real-time loads?)

o Measures of average, st_dev, maximum and
minimum of several tests (> 20 experiences)

N M

‘Worst/ Bad scenario evaluation

m |ldentification of each worst/bad case

m Definition of a load to achieve the w/b case
m Execute the load

m Measure

Worst-case (WC) and Bad-case (BC) allocation

197

éLProcessor instructions 81995 08385 1403 721108 164

Evaluation loads

m Real load

o There are not examples of dynamic memory use
In real-time systems

o Available loads of classical programs using
dynamic memory: compilers (gcc, perl,..),
applications (gs, espresso, cfrac,...)

m Synthetic loads
o Several general purpose models
o Generated from periodic memory use models

‘ Synthetic load for periodic models

m Periodic task model extension
a Each task is defined as T.=(c, p;, d,, g;, h))

= ¢.: Maximum amount of memory per period
= h; Holding time

/{ Memory pool k

' ' nna ' rb

‘ 1Gmax Htmax ‘

Attributes: g

Gmax - maximum amount of memory allocated by p¢

Htmax - maximum holding time

N M

‘ Load generation

m A load generator produces set of task with
different profiles.

o Huge blocks
o Small blocks
o Hybrid (small and large) blocks

Block sizo frequency (e)

ency (test 1) Block size frequency (test 2

400 500 6(

e

Load examples

2000

of mallocs
Fuimilsed ol ko

Number

Block sizes

Block sizes

Evaluation

s [emporal measures

o Number of cycles: Highly dependent of the
processor used (AMD, Intel) and of the data
caches,...

o Number of instructions: Unaffected by cache,
TLBs, processor,... but it is hard to measure
(Processor switched to single-step mode)

m Spatial measures

o Fragmentation: very huge number of
operations

N M

Evaluation: Number of proc. cycles

m In order to reduce the system (hardware, os, interrupts, ..)

interferences

o Each test has been executed with interrupt disabled

o A trace has been generated and used for 4 replicas in
order to avoid processor interferences and cache

missing

trace

AT

.

replicas

4

——— *compare and extract

minimum

Result

.

N PN

Evaluation: Number of proc. cycles

Temporal cost of the allocator operations in processor cycles

Vialloc Test1 Test2 Test3

\lloc. Avg. | Stdv. | Max. | Min. | Avg. | Stdv. Max. | Min. | Avg. Stdv. | Max. | Min.
-irst-fit 182 218 977 101 150 286/ 1018 95 169 282 2059 1(
3est-fit 479 481 2341 114 344 348 2357 98 1115 1115 6413 1(
3inary-buddy 169 465 1264 140 156 228 656 104 162 225 1294 1
DLmalloc 344 347 1314 123 268 290, 2911 79 309 312 2087 &
1alf-fit 189 331 592 131 148 577 657 108 157 552 626 1<
[LSF 206 256 371 135 169 268 324 109 191 229 349 11
“ree Test1 Test2 Test3

E\Iloc. Avg. | Stdv. | Max. | Min. | Avg. | Stdv. Max. | Min. | Avg. Stdv. | Max. | Min.
;:irst-fit 162 188 1432 87 148 182 1412 86 174 195 1512 ¢
Best-fit 152 188 1419 88 121 235 1287 87 145 179 1450 ¢
Binary-buddy 152 302 1127 126 155 300 760 126 150 306 824 12
;)Lmalloc 122 211 342 87 101 328 335 75 127 186 335 7
Half-fit 181 212 518 104 171 233 870 103 182 210, 1025 1(
_TLSF 192 215 624 109 161 211 523 106 187 214 552 1(

-

” M

‘ Evaluation: Number of instructions

m A process (parent) counts (PTRACE) the
executed instructions of another process
(process that performs the mallocs and
frees)

PTRACE
Process to be
step by step . analysed

Monitor

THrez - TITEE

- . | 1 » g . Y "
-, A il - e Ty ey e e T e
' S . . o) - ST S L s . | oo |G T =g WAL MWL ANIR LY 4R PR
| .t Y. 1 F— T . GAP IR B AP WA A, m e w g o
° .I a - e a LLLES 1 = i &
. . . : s 3 ya0 M

s e T L L ke R e e X SR

e 'y B R ® B B

tram owor e LR L 1. R s TR

Temporal cost of the allocator operations in processor instructions

Evaluation: Number of instructions

Vialloc Test1 Test2 Test3
Alloc. Avg. | Stdv. Max. Min. | Avg. Stdv. | Max. | Min. | Avg. | Stdv. Max. @ Min.
-irst-fit 204 21 478 71 201 17/ 818 700 203 23 957 70
3est-fit 582 69 798 76/ 442 130 1006 76/ 805 179 1539 76
3inary-buddy 169 17 843 157, 136 22 1113 95 153 24 1113 95
DLmalloc 279 107, 921 64 161 126 933 49 232 152 1277 57
alf-fit 118 11 123 115 116 71 123 76/ 118 11 123 82
[LSF 147 13 164, 104 118 25| 164 84, 133 22| 164 84
“ree Test1 Test2 Test3
Alloc. Avg. | Stdv. Max. | Min. | Avg. Stdv. | Max. | Min. | Avg. | Stdv. Max. Min.
-irst-fit 93 96 128 59 90 92 128 57 92 95 128 57
Sest-fit 91 115 126 57 69 148 126 57 79 198 128 57
3inary-buddy 68 700 225 65 68 72 277 65 69 73 228 65
'meaIIoc 70, 128 77 53 59 177 77 39 67 168 77 39
Half-fit 117, 117, 167 73 115 116 165 76, 117, 117 167 76
140/ 140, 217 91 107, 110, 216 87 1200 122 217 87

LSF

IL

” M

Evaluation: Fragmentation

m |t is measured to a factor F which is computed
as the point of the maximum memory used by
the allocator relative to the point of the maximun
amount of memory used by the load (live
memory). |

o L 2 |
a8
F= LN H i iy 2o
L Metric proposed by Johnstone et h

al. (Johnstone et al., 98) Time (useo

B D

Memory (kbytes)

7000

GO0

5000

4000

3000

2000

1000

‘Evaluation: Fragmentation

e ——————— T

T T
Memory Reqgue sted

S = -1
Hali-Fit -

Best-Fit
BinBuddy
DLmalkoc

First-Fit

1000

1500 2000

Time (in Malloc requests)

2500

3500

Evaluation: Fragmentation

Fragmentation results Factor F

Test1 Test2 Test3

OC. Avg. | Stdv. | Max. | Min. | Avg. | Stdv. | Max. @ Min. | Avg. | Stdv. Max. | Min.
st-fit 93,25 3,99 99,68 87,57 83,21 9,04 98,17 70,67 87,63 4,41 94,82 70,
st-fit 10,26 1,25 14,23 7,2 2151 2,73 26,77 1717, 11,76] 1,32 14,14 9,7
\ary-buddy | 73,56| 6,36/ 85,25 66,61 61,97 1,97 65,06 58,79 77,58 5,39 84,34 064;
malloc 10,11 1,55 12,9 7,39| 17,13 2,07 21,75 14,71 11,79 1,39 13,72 9
If-fit 84,67/ 3,02 90,07 804 71,5 3,44 7545 65,02 98,14 3,12 104,67 94,
BF 10,49 1,66 11,79] 6,51 14,86] 2,15 18,56] 9,86 11,15 1,1 13,91 7/
i

;
|
X
s
i
J
X

.
:

N

‘Conclusions

s TLSF ia an allocator that performs operations
o with predictable cost
o very efficient (fast)
o low fragmentation

m It permits:

o To consider dynamic storage allocation in real-time
systems (predictable operations)

o The analysis of a resource as memory for systems
with memory constraints (embedded systems)

r. 4. J

