
Description of the TLSF Memory Allocator Version 2.0

M. Masmano, I. Ripoll, A. Crespo

11th November 2005

Abstract

TLSF is a bounded-time (O(1)), Good-fit allocator. TLSF is implemented using a
combination of the Segregated lists and bitmaps data structures.

This document presents a detailed description of the TLSF allocator. The data
structures and the key internal algorithms are explained.

1 Description

The TLSF data structure can be represented as a two-dimension array. The first dimension
splits free blocks in size-ranges a power of two apart from each other, so that first-level index
i refers to free blocks of sizes in the range [2i,2i+1[. The second dimension splits each first-
level range linearly in a number of ranges of an equal width. The number of such ranges,
2L, should not exceed the number of bits of the underlying architecture, so that a one-word
bitmap can represent the availability of free blocks in all the ranges. According to experience,
the recommended values for L are 4 or, at most, 5 for a 32-bit processor. Figure 1 outlines
the data structure for L = 3.

TLSF uses word-size bitmaps and processor bit instructions to find a suitable list in con-
stant time. For example, using the ffs1 instruction it is possible to find the smaller non-empty
list that holds blocks bigger or equal than a given size; and the instruction fls2 can be used
to compute the blog2(x)c function. Note that it is not mandatory to have these advanced
bit operations implemented in the processor to achieve constant time, since it is possible to
implement them by software using less than 6 non-nested conditional blocks (see glibc or
Linux implementation).

Given a block of size r > 0, the first and second indexes (fl and sl) of the list that holds
blocks of its size range are: fl = blog2 (r)c and sl =

⌊
(r − 2fl)/2fl−L⌋. For efficiency reasons,

the actual function used to calcualte sl is
⌊
r/sfl−L⌋ − 2L. The function mapping insert

computes efficiently fl and sl:

1ffs: Find first set. Returns the position of the first (least significat) bit set to 1.
2fls: Find last set. Returns the position of the most significant bit set to 1.

1

GII: Grupo de Informática Industrial Universidad Politécnica de Valencia

32 36 40 44 48 52 56

64 72 80 88 96 104 112

128 144 160 176 192 208 224

60

120

27+7*24

free
free

free

216+0*213 216+1*213 216+2*213 216+3*213 216+4*213 216+5*213 216+6*213 216+7*213

.

.

free
free

1 2 3 4 5 6 7

5

6

7

16

231+1*228 231+2*228 231+3*228 231+4*228 231+5*228 231+6*228 231+7*22831
.

.

.

.

fl
sl

0

231+0*228

 5 01000000
 6 00000100
 7 00000000

16 00100000

31 00000000

SL_bitmaps[]

110...1...0FL_bitmap:

 . . .

 . . .

 01234567

free

Figure 1: TLSF data structures example.

procedure mapping insert (r: integer; fl, sl: out integer) is
begin

fl := fls (r);
sl := (r right shift (fl - L)) - 2L ;

end mapping insert;

For example, given the size r = 74, the first level index is fl = 6 and the second level
index is sl = 1. The binary representation of the size gives an intuitive view of the values of
fl and sl:

r = 74d =
15

0
14

0
13

0
12

0
11

0
10

0
9

0
7

0
fl=6
6

1
5

0
4

0
3

1︸︷︷︸
sl=1

2

0
1

1
0

0b

The list indexed by fl = 6 and sl = 1 is where blocks of sizes in the range [72..80[are

2

http://www.gii.upv.es/

GII: Grupo de Informática Industrial Universidad Politécnica de Valencia

located. But if the requested size is 74 and we search in this list, then we have to discard
blocks of sizes 72 and 73, which will introduce an additional and unpredictable time to the
algorithm. Instead of discarding smaller blocks, TLSF will start searching from the list of
blocks whose minimum size is at least as large as the requested size. In the case of the
example, it will start in fl = 6 and sl = 2, i.e., the list holding blocks of sizes [80..88[. This
decision makes TLSF a Good-fit, rather than a Best-fit policy. The function mapping search
computes the values of fl and sl used as starting point to search a free block.

procedure mapping search (r: in out integer; fl, sl: out integer) is
begin

r := r + (1 left shift (fls(r) - L)) - 1;
fl := fls (r);
sl := (r right shift (fl - L)) - 2L;

end mapping search;

Note that the mapping search function rounds up the requested size to the closest list. On
one hand rounding up blocks causes internal fagmentaion, but on the other hand it greately
reduces other types of fragmentation: external and structural . The reader is redered to other
publications of the autors for a detailed explanation of this issue.

Now, the function search suitable block finds non-empty list that holds blocks larger than
or equal to the one pointed by the indexes fl and sl. This search function traverses the data
structure from right to left in second level indexes and then upwards in first level, until it
finds the first non-empty list. Again, the use of bit find instructions allows to implement the
search in a very compact manner.

function search suitable block (fl, sl: in integer) return address is
begin

temp bitmap := SL bitmaps[fl] and (FFFFFFFF16 left shift sl);
if temp bitmap 6= 0 then

non empty sl :=ffs (temp bitmap[fl]);
non empty fl :=fl;

else
temp bitmap := FL bitmap and (FFFFFFFF16 left shift (fl+1));
non empty fl := ffs (temp bitmap);
non empty sl := ffs (SL bitmaps[non empty fl]);

end if;
return head of list (non empty fl, non empty sl);

end search suitable block;

By following the example, the returned free block is the one pointed by the list (6, 5) which
holds blocks of sizes [104..112[.

3

http://www.gii.upv.es/

GII: Grupo de Informática Industrial Universidad Politécnica de Valencia

function Malloc (r: in integer) return address is
begin

mapping search (r, fl, sl);
free block := search suitable block (r, fl, sl);
if not(free block) then return error;
remove block (free block);
if size (free block) > split size threshold then

remaining block := split (free block);
mapping insert (size(remaining block), fl, sl);
insert (remaining block, fl, sl);

end if;
return free block;

end Malloc;

procedure Free (block: in address) is
begin

merged block := merge left (block);
merged block := merge right (merged block);
mapping insert (size(merged block), fl, sl);
insert (merged block, fl, sl);

end Free;

The Free function always tries to coalesce neighbour blocks. Merge left checks whether
the previous physical block is free, if so, it is removed from the segregated list and coalesced
with the block being freed. Merge right does the same operation but with the next physical
block. Physical neighbours are quickly located using the size of the free block (to locate next
block) and a pointer to the previous one, which is stored in the head of the freed block. The
cost of all operations is constant (O(1)).

2 Download

The code is available at: Real-Time Dynamic Storage Allocation Site

4

http://www.gii.upv.es/
http://rtportal.upv.es/rtmalloc/

	Description
	Download

