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Abstract Dynamic memory allocation has been used for decades. However, it has
seldom been used in real-time systems since the worst case of spatial and tempo-
ral requirements for allocation and deallocation operations is either unbounded or
bounded but with a very large bound.

In this paper, a new allocator called TLSF (Two Level Segregated Fit) is pre-
sented. TLSF is designed and implemented to accommodate real-time constraints.
The proposed allocator exhibits time-bounded behaviour, O(1), and maintains a very
good execution time. This paper describes in detail the data structures and functions
provided by TLSF. We also compare TLSF with a representative set of allocators
regarding their temporal cost and fragmentation.

Although the paper is mainly focused on timing analysis, a brief study and com-
parative analysis of fragmentation incurred by the allocators has been also included
in order to provide a global view of the behaviour of the allocators.

The temporal and spatial results showed that TLSF is also a fast allocator and
produces a fragmentation close to that caused by the best existing allocators.
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1 Introduction

Although dynamic storage allocation has been extensively studied, it has not been
widely used in real-time systems due to the commonly accepted idea that, because
of the intrinsic nature of the problem, it is difficult or even impossible to design an
efficient, time-bounded algorithm. Even the name, dynamic storage allocation, seems
to suggest the idea of dynamic and unpredictable behaviour.

The real source of the uncertainty seems to come from the basic definition of
the problem. An application can request and release blocks of different sizes in a
sequence that is, a priori, unknown to the allocator. The allocator must keep track
of released blocks in order to reuse them to serve new allocation requests, otherwise
memory will eventually be exhausted. A key factor in an allocator is the data structure
it uses to store information about free blocks. Although not explicitly stated, it seems
that it has been accepted that even using a very efficient and smart data structure the
allocator algorithm, in some cases, has to perform some sort of linear or logarithmic
search to find a suitable free block; otherwise, significant fragmentation may occur.
For example, buddy systems (Binary-buddy Knuth 1973, Fibonacci-buddy, double-
buddy, etc.) use a small number of queues and employ a restrictive method to split
and coalesce blocks, so that the list of free blocks always contains blocks of the same
size. The fragmentation produced by these allocators is very high.

Regarding the way allocation and deallocation are managed, there are two general
approaches to dynamic storage allocation (DSA): (i) explicit allocation and dealloca-
tion, where the application has to explicitly call the primitives of the DSA algorithm
to allocate memory (e.g., malloc) and to release it (e.g., free); and (ii) implicit mem-
ory deallocation (also known as garbage collection), where the DSA is in charge
of collecting the blocks of memory that have been previously requested but are not
needed anymore. This paper is focused explicitly on low level allocation and deallo-
cation primitives. Garbage collection is not addressed in this work.

This work was conceived during the porting of the Ada runtime support to
RTLinux in the OCERA project (OCERA 2002). The execution of Ada programs
requires the availability of dynamic memory management which was not supported
by the real-time operating system. A preliminary design and implementation of the
allocation algorithm was presented in Masmano et al. (2003, 2004). During the eval-
uation process of this allocator we found another allocator proposal, called Half-fit
(Ogasawara 1995), with a similar approach to meeting real-time constraints but with
very high fragmentation. The similarities of both works are significant, and will be
discussed in the paper. This allocator passed unnoticed by the real-time community
until it was rediscovered by the authors of this paper.

The contributions of this paper can be summarised in following points:

– The proposed dynamic memory allocator (TLSF) is the first algorithm that per-
forms the allocation/deallocation in constant time maintaining a very low memory
fragmentation. Moreover, its efficiency, in terms of number of processor instruc-
tions, is very high.
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– The detailed comparative analysis shows that TLSF outperforms all other alloca-
tors regarding real-time requirements.

The paper is organised as follows: the following section summarises the dynamic
memory requirements of a real-time environment. Section 4 describes the work car-
ried out on real-time allocation algorithms. It includes a categorisation of the alloca-
tion policies and a brief description of the selected allocators, detailing its temporal
and spatial behaviour. The TLSF allocator is presented in Sect. 5. Section 6 describes
the metrics and experimental framework. Section 7 presents the worst-case analysis
and the synthetic and real workload used in the experiments. In Sect. 8, experimental
results are presented and discussed. The last section concludes by summarising the
results obtained and outlines open issues and the directions of future work.

2 Motivation

Nowadays portable consumer embedded devices have experienced a very fast growth
in their variety, complexity and functionality, including multimedia and wireless net-
work applications demanding extensive use of memory. These new applications (e.g.,
MPEG4 or network protocols) work with an important unpredictability of their input
data.

This lack of predictability due to the size of the input data is present in other
systems or applications such as:

– Embedded network systems. Routers, switches, and other network systems have
to deal with different packet sizes. These devices use dynamic memory storage
to handle incoming packets until they are delivered. Major network system man-
ufacturers (CISCO, IBM, Infineon, etc.) report this functionality in their product
characteristics.

– Video and voice devices. In these applications if the size of the buffer allocated
to the user requests increases, then the latency and memory need also increases.
Dynamic buffer allocation schemes permit to adjust the buffer sizes to the available
resources in each situation.

– Games and graphic management. Game technology uses dynamic memory for a
wide range of features. Functionalities such as 2D graphic drawing, surface rota-
tion and scaling, 3D reconstruction, animation functions, etc., where the number
of elements (corners, surfaces, shadow elements, etc.) change completely from one
scene to the next one.

– Control of mobile robots. Control of mobile devices (such as robots, vehicles, . . .)
that have to deal with a high variability in the environment conditions (obstacles,
map reconstruction, image processing, sensor fusion, etc.). Multi-agent systems are
a concrete technology that perform agent allocation and deallocation depending on
the system behaviour.

– Databases. Memory allocation in database systems has been studied extensively to
handle query responses that can vary from a few bytes to a large amount of data.

– Web servers. Web servers integrate some of the above mentioned features such as
databases, networking, video, etc., to return dynamic contents.

– Object oriented languages. Dynamic memory storage has been deeply studied and
used in languages such as RTJava.
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Most of these examples have real-time and spatial constraints. Efficient use of
memory is a rather important issue mainly because they have to run for long periods
of time and the use of memory has to be controlled.

3 Real-time requirements for DSA

One of the key issues in real-time systems is the schedulability analysis to determine
whether the system can satisfy the timing constraints of the application at run time.
Regardless of the analysis and scheduling techniques used, it is essential to determine
the WCET of all the running code, including application code, library functions and
operating system. Thus, the study and analysis of DSA functions have to be carefully
performed to determine the cost in the worst-case situation.

Another characteristic that differentiates real-time systems from other systems is
that real-time applications run for large periods of time. Most non-real-time applica-
tions take only a few minutes or hours to complete their work and finalise. Real-time
applications are usually executed continuously during the whole life of the system
(months, years, . . .). This behaviour directly affects one of the critical aspects of dy-
namic memory management: the memory fragmentation.

Considering all these aspects, the requirements of real-time applications regarding
dynamic memory allocation can be summarised as:

Bounded execution time: The worst-case execution time (WCET) of memory allo-
cation and deallocation has to be known in advance and be independent of applica-
tion data. This is the main requirement that must be met.

Fast completion time: Besides having a bounded execution time, it has to be short
for the DSA algorithm to be usable. A bounded DSA algorithm 10 times slower than
a conventional one may not be useful.

Minimise the memory pool size: The memory requests must always be satisfied.
Non-real-time applications can receive a null pointer or just be killed by the OS
when the system runs out of memory. Although it is obvious that it is not possible
to always grant all the memory requested, the DSA algorithm has to minimise the
chances of exhausting the memory pool by minimising the amount of wasted mem-
ory. Therefore, an analytical bound on the maximum fragmentation is also needed.

4 Related work

Wilson et al. (1995) presented a detailed survey of dynamic storage allocation which
has been considered the main reference since then. The authors presented a compre-
hensive description, as well as the most important results, of all the problems related
with memory allocation: the basic problem statement, fragmentation, taxonomy of
allocators, coalescing, etc. The paper also contains an outstanding chronological re-
view of all related research starting from four decades ago.

Also Ogasawara (1995) proposed the Half-fit allocator, which was the first to per-
forms in constant time both to allocate and deallocate. Half-fit employs bitmaps and
bit search instructions (available on most current processors) to achieve a worst-case
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execution time (WCET) of O(1). Experimental analysis showed that Half-fit exhibits
better memory usage than Binary-buddy. Half-fit uses a single level of segregated1

lists, each list containing free blocks of sizes a power of two apart. This structure
yields a theoretic wasted memory similar to that of Binary-buddy.

A different approach to achieving real-time performance was presented by Ford
(1996). Ford analysed the contention problem, and the associated priority inversion,
that arises when several concurrent tasks use a single memory pool. This work does
not focus on the policy or mechanism used by the allocator but on the concurrent
control of the allocator. Ford proposed a lock-free algorithm based on uncontrolled
access followed by a validation and recovery phase.

Grunwald and Zorn (1993) proposed an algorithm to implement allocators adapted
to the target application. At the design phase the target application is instrumented
and tested to collect data; this data is used later to synthesise the allocator. Although
most custom allocators do not perform as well as expected (Berger et al. 2002a), we
believe that this approach should be investigated further in real-time systems.

Every new allocator has to be analysed, tested and compared with others in or-
der to show and measure the intended improvements. A lot of work has been done
on performance evaluation to analyse both spatial and timing performance. Zorn and
Grunwald (1994) investigated the accuracy of synthetic workload models, and con-
cluded that many real applications have such complex memory request patterns that
no synthetic allocator can simulate them properly. The real workload used by Zorn in
this study has been used by most researchers since then.

Puaut (2002) presented a performance analysis of a set of general purpose alloca-
tors with respect to real-time requirements. The paper presented detailed average and
worst-case timing analysis. For the experimental analysis, she used three programs:
mpg123, Cfrac and Espresso. In our experiments, we also used Cfrac and Espresso,
as well as other programs, but not mpg123 because preliminary tests showed that the
current version of mpg123 performed so few allocation/deallocation operations that
it was not possible to obtain meaningful results.

4.1 Dynamic storage allocation algorithms

This section presents a categorisation of existing allocators and a brief description
of the most representative ones, based on the work of Wilson et al. (1995), which
provides a complete taxonomy of allocators. According to their terminology, the al-
locators can be considered in the following aspects: strategy, policy and mechanism.
Each allocation policy is motivated by an allocation strategy and implemented by an
allocation mechanism.

Considering the main mechanism used by an allocator, the following categorisa-
tion is proposed (Wilson et al. 1995). Examples of each category are given. In some
cases it is difficult to assign an allocator to a category because it uses more than one
mechanism. In that case, we tried to determine which is the more relevant mechanism
and categorise the allocator accordingly.

1Segregated free list (Wilson et al. 1995) is an array of lists where each list holds free blocks of a particular
range of sizes.
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Sequential Fits: Sequential Fits algorithms are the most basic mechanisms. They
search sequentially free blocks stored in a singly or doubly linked list. Examples are
first-fit, next-fit, and best-fit.
First-fit and best-fit are two of the most representative sequential fit allocators, both
of the are usually implemented with a doubly linked list. The pointers which im-
plement the list are embedded inside the header of each free block.2 The first-fit
allocator searches the free list and selects the first block whose size is equal or
greater than the requested size, whereas the best-fit goes further to select the block
which best fits the request.

Segregated Free Lists: These algorithms use a set of free lists. Each of these lists
store free blocks of a particular predefined size or size range. When a free block is
released, it is inserted into the list which corresponds to its size. It is important to
remember that the blocks are logically but not physically segregated. There are two
of these mechanisms: simple segregated storage and segregated fits. An example of
an allocator with this mechanism is Fast-fit (Stephenson 1983), which uses an array
for small-size free lists and a binary tree for larger sizes.

Buddy Systems: Buddy Systems (Knuth 1973) are a particular case of Segregated
free lists. Being H the heap size, there are only log2(H) lists since the heap can
only be split in powers of two. This restriction yields efficient splitting and merging
operations, but it also causes a high memory fragmentation. There exist several vari-
ants of this method (Peterson and Norman 1977) such as Binary-buddy, Fibonacci-
buddy, Weighted buddy and Double-buddy.
The Binary-buddy (Knuth 1973) allocator is the most representative of the buddy
systems allocators, which besides has always been considered as a real-time allo-
cator. The initial heap size has to be a power of two. If a smaller block is needed,
then any available block can only be split into two blocks of the same size, which
are called buddies. When both buddies are again free, they are coalesced back into
a single block. Only buddies are allowed to be coalesced. When a small block is
requested and no free block of the requested size is available, a bigger free block is
split one or more times until one of a suitable size is obtained.

Indexed Fits: This mechanism is based on the use of advanced data structures to in-
dex the free blocks using several relevant features. To mention a few examples: algo-
rithms which use Adelson-Velskii and Landin (AVL) trees (Sedgewick 1998), binary
search trees or Cartesian trees (Fast-Fit, Stephenson 1983) to store free blocks.
As mentioned above, the AVL allocator uses an AVL tree instead of a list. Basically,
an AVL tree is a binary search tree where the heights of the two child subtrees of
any node never differ in more than one, hence it is also known as a height-balanced
tree. This interesting property is achieved by re-balancing the tree when it violates
this restriction.
All operations on AVL trees (insert, remove and find) have a logarithmic time cost
O(1.44 log2(n)).

Bitmap Fits: Algorithms in this category use a bitmap to find free blocks rapidly
without having to perform an exhaustive search. Half-fit (Ogasawara 1995) is a good
example of this sort of algorithms.

2This technique is called boundary tag.
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Half-fit groups free blocks in the range [2i ,2i+1[ in a list indexed by i. Bitmaps
to keep track of empty lists jointly with bitmap processor instructions are used to
speed-up search operations.
When a block of size r is required, the search for a suitable free block starts on i,
where i = �log2(r − 1)� + 1 (or 0 if r = 1). Note that the list i always holds blocks
whose sizes are equal to or larger than the requested size. If this list is empty, then
the next non-empty free list is used instead.
If the size of the selected free block is larger than the requested one, the block is
split in two blocks of sizes r and r ′. The remainder block of size r ′ is re-inserted in
the list indexed by i′ = �log2(r

′)�.
The fact of avoiding an exhaustive search and only considering the sizes of the
free blocks as a power of two, causes what the author calls incomplete memory use
(Ogasawara 1995). The impact of incomplete memory use is discussed and analysed
in Sect. 4.2.
The cost of this algorithm is constant (O(1)).

Hybrid allocators: Hybrid allocators use different mechanisms to improve certain
characteristics (execution time, fragmentation, etc.) The most representative is Doug
Lea’s allocator (Lea 1996), which is a combination of several mechanisms depend-
ing on the requested size. In what follows this allocator will be referred to as DL-
malloc.
DLmalloc implements a good fit jointly with some heuristics to speed up the opera-
tions as well as to reduce fragmentation.3

Depending on the size of the free blocks, two different data structures are used.
Blocks of size up to 256, are stored in a vector of 30 segregated lists. Each list
contains blocks of the same size. Larger blocks, are organised in a vector of 32
trees, which are segregated in power-of-2 ranges, with two equally spaced treebins
for each power of two. For each tree, its power-of-2 range is split in half at each node
level with the strictly smaller value as the left child. Same sized chunks reside in a
FIFO doubly linked-list within the nodes.This allocator uses a single array of lists,
where the first 48 indexes are lists of blocks of an exact size (16 to 64 bytes) called
“fast bins”. The remaining part of the array contains lists of segregated lists, called
“bins”. These segregated lists are sorted by block size. A mapping function is used
to quickly locate a suitable list. DLmalloc uses the delayed coalescing strategy, that
is, the deallocation operation does not coalesce blocks. Instead a massive coalescing
is done when the allocator cannot serve a request.
DLmalloc is considered one of the best and is widely used in many systems (glibc,
eCos, etc.). There have been several releases of this allocator. Current releases have
major changes and improvements over previous ones.
Additionally, several custom allocators have been proposed (Grunwald and Zorn
1993; Bonwick 1994; Atienza et al. 2003). They are designed considering the spe-
cific behaviour of the target application and can be tuned to improve time perfor-
mance or optimise memory footprint. However, in Berger et al. (2002b) several
custom allocators are evaluated and, in general, their performance is worse than
DLmalloc’s.

3A detailed description of the algorithm can be found in the comments of the code of the allocator [http:
//gee.cs.oswego.edu].

http://http://gee.cs.oswego.edu
http://http://gee.cs.oswego.edu
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4.2 Fragmentation

Although this paper is mainly focused on the temporal analysis of the TLSF, we have
considered that the fragmentation incurred by this, and others algorithms, should be
taken into account. Due to paper limitations, we present a preliminary analysis of the
fragmentation. A more detailed analysis will be stated as future work.

The notion of fragmentation seems to be well understood. It is hard to define a
single method of measuring or even defining what fragmentation is. In Wilson et al.
(1995) fragmentation is defined as “the inability to reuse memory that is free”.

Historically, two different sources of fragmentation have been considered: internal
and external. Internal fragmentation is caused when the allocator returns to the appli-
cation a block that is bigger than the one requested (due to block round-up, memory
alignment, unability to handle the remaining memory, etc.). External fragmentation
occurs when there is enough free memory but there is not a single block large enough
to fulfil the request. Internal fragmentation is caused only by the allocator imple-
mentation, while external fragmentation is caused by a combination of the allocation
policy and the user request sequence.

Robson (1971, 1974, 1977) analysed the worst-case memory requirements for sev-
eral well known allocation policies. Robson designed allocation sequences that force
each policy cause its maximum external fragmentation. If the maximum allocated
memory (live memory) is M and the largest allocated block is m, then the heap size,
H , needed for the First-fit algorithm is: M

ln 2

∑m
i=1(

1
i
). Best-fit worst-case spatial cost

is close to: M(m− 2). According to Knuth (1973), the worst case for Binary-buddy4

is: M(1 + log2 m). Robson also showed that an upper bound for the worst-case of
any allocator is given by: M × m.

Most of the initial fragmentation studies (Shore 1975; Nielsen 1977) were based
on synthetic workload generated by using well-known distributions (exponential,
hyper-exponential, uniform, etc.). The results obtained were not conclusive; these
studies show contradictory results with slightly different workload parameters. At
that time, it was not clear whether First-fit was better than Best-fit. Zorn and Grun-
wald (1994) investigated the accuracy of simple synthetic workload models and con-
cluded that synthetic workload should not be used in the general case because it does
not reproduce properly the behaviour of real workload.

Johnstone and Wilson (1998) analysed the fragmentation produced by several
standard allocators, and concluded that the fragmentation problem is a problem of
“poor” allocator implementations rather than an intrinsic characteristic of the allo-
cation problem itself. Among other observations, Johnstone and Wilson pointed out
that low-fragmentation allocators are those that perform immediate coalescing, im-
plement a Best-fit or Good-fit policy and try to relocate blocks which have been
released recently over those that were released further in the past.

There are many ways to measure the spatial efficiency of an allocator: plots of
heap size, maps of busy/free blocks, amount of times the allocator calls the brk system
call,5 etc. In general, all the memory managed by the allocator that cannot be assigned

4This result is not directly presented in the Knuth book but let as a reader exercise.
5The brk function is used to increase dynamically the amount of memory allocated for the calling process.
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to the application will be called wasted memory. In Johnstone and Wilson (1998), four
ways to measure fragmentation were considered. Although, all of them give an idea
of the amount of fragmentation, in the authors opinion, the factor F = (H − M)/M
seems to be the most representative. In fact, this F factor measures the percentage
of the maximum live memory with respect to the maximum memory needed at any
time.

5 TLSF overview

For completeness, in this section we describe the allocator presented in Masmano et
al. (2003, 2004), a dynamic memory allocation called TLSF (Two-Level Segregated
Fit). A more detailed description of the algorithm internals can be found in Masmano
et al. (2007).

TLSF is a constant-time, good-fit allocator. The good-fit policy tries to achieve
the same results as best-fit (which is known to cause a low fragmentation in practice
Johnstone and Wilson 1998), but introduces implementation optimisations so that it
may not find the tightest block, but a block that is close to it. TLSF implements a
combination of the segregated and bitmap fits mechanisms. The use of bitmaps allow
to implement fast, bounded-time mapping and searching functions.

5.1 TLSF implementation details

The TLSF data structure can be represented as a two-dimensional array. The first
dimension splits free blocks in size-ranges a power of two apart from each other, so
that first-level index i refers to free blocks of sizes in the range [2i ,2i+1[. The second
dimension splits each first-level range linearly in a number of ranges of an equal
width. The number of such ranges, 2L, should not exceed the number of bits of the

Fig. 1 TLSF data structures example
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underlying architecture, so that a one-word bitmap can represent the availability of
free blocks in all the ranges. According to experience, the recommended values for
L are 4 or, at most, 5 for a 32-bit processor. Figure 1 outlines the data structure for
L = 3.

TLSF uses word-size bitmaps and processor bit instructions to find a suitable list in
constant time. For example, using the ffs6 instruction it is possible to find the smaller
non-empty list that holds blocks bigger or equal than a given size; and the instruction
fls7 can be used to compute the �log2(x)� function. Note that it is not mandatory to
have these advanced bit operations implemented in the processor to achieve constant
time, since it is possible to implement them by software using less than 6 non-nested
conditional blocks (see glibc or Linux implementation).

Given a block of size r > 0, the first and second indexes (fl and sl) of the list
that holds blocks of its size range are: fl = �log2(r)� and sl = �(r − 2fl)/2fl−L�. This
expression for sl can be rewritten as �r/sfl−L� − 2L which leads to a more efficient
implementation. The function mapping_insert computes efficiently fl and sl:

procedure mapping_insert (r: integer; fl, sl: out integer) is
begin

fl := fls (r);

sl := (r right_shift (fl − L)) − 2L ;

end mapping_insert ;

For example, given the size r = 74, the first level index is fl = 6 and the second
level index is sl = 1. The binary representation of the size gives an intuitive view of
the values of fl and sl:

r = 74d =15
0

14
0

13
0

12
0

11
0

10
0

9
0

7
0

6
1

fl=6
5
0

4
0

3
1︸︷︷︸

sl=1

2
0

1
1

0
0b

The list indexed by fl = 6 and sl = 1 is where blocks of sizes in the range [72..80[
are located. But if the requested size is 74 and we search in this list, then we have
to discard blocks of sizes 72 and 73, which will introduce an additional and unpre-
dictable time to the algorithm. Instead of discarding smaller blocks, TLSF will start
searching from the list of blocks whose minimum size is at least as large as the re-
quested size. In the case of the example, it will start in fl = 6 and sl = 2, i.e., the list
holding blocks of sizes [80..88[. This decision makes TLSF a Good-fit, rather than a
Best-fit policy. The function mapping_search computes the values of fl and sl used as
starting point to search a free block. Note that the requested size r is rounded-up to
the next list to reduce fragmentation (see Sect. 4.2).

6ffs: Find first set. Returns the position of the first (least significant) bit set to 1.
7fls: Find last set. Returns the position of the most significant bit set to 1.
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procedure mapping_search (r: in out integer;

fl, sl: out integer) is
begin

r := r + (1 left_shift (fls(r) − L)) − 1;
fl := fls(r);

sl := (r right_shift (fl − L)) − 2L;
end mapping_search ;

Now the function search_suitable_block finds a non-empty list that holds blocks
larger than or equal to the one pointed by the indexes fl and sl. This search function
traverses the data structure from right to left in second level indexes and then up-
wards in first level, until it finds the first non-empty list. Again, the use of bit find
instructions allows to implement the search in a very compact manner.

function search_suitable_block (fl, sl: in integer)

return address is
begin
bitmap_tmp:= SL_bitmaps[fl] and (FFFFFFFF#16# left_shift sl);
if bitmap_tmp �= 0 then
non_empty_sl:= ffs(bitmap_tmp);
non_empty_fl:= fl;

else
bitmap_tmp:= FL_bitmap and (FFFFFFFF#16# left_shift (fl + 1));
non_empty_fl:= ffs(bitmap_tmp);
non_empty_sl:= ffs(SL_bitmaps[non_empty_fl]);

end if;
return head_list(non_empty_fl, non empty_sl);

end search_suitable_block ;

By following the example, the returned free block is the one pointed by the list
(6,5) which holds blocks of sizes [104..112[.

function malloc (r: in integer) return address is
begin
mapping_search(r, fl, sl);
free_block:= find_suitable_block(r, fl, sl);
if not(free_block) then return error; end if;
remove_head(free_block);
if size(free_block)-r > split_size_threshold then
remaining_block:= split(free_block, r);
mapping_insert(size(remaining_block), fl, sl);
insert_block(remaining_block, fl, sl);

end if;
return free_block;

end malloc ;



160 Real-Time Syst (2008) 40: 149–179

The Free function always tries to coalesce neighbour blocks. Merge_left checks
whether the previous physical block is free, if so, it is removed from the segregated
list and coalesced with the block being freed. Merge_right does the same operation
but with the next physical block. Physical neighbours are quickly located using the
size of the free block (to locate next block) and a pointer to the previous one, which
is stored in the head of the freed block. The cost of all operations is constant (O(1)).

procedure free (block: in address) is
begin
merged_block:= merge_prev(block);
merged_block:= merge_next(merged_block);
mapping_insert(size(merged_block), fl, sl);
insert_block(merged_block, fl, sl);

end free ;

5.2 Fragmentation study

The main focus of this paper is the temporal analysis of TLSF, however, considering
that there are two proposals of constant time allocators, Half-fit and TLSF, the aim of
this section is to present a comparative study of the theoretical fragmentation incurred
by them.

Both Half-fit and TLSF implement the same policy: a set of segregated lists store
blocks in ranges of sizes; the allocation mechanism just searches the segregated list
that contains blocks whose size is equal to or larger than the one requested. Since
all the blocks of the target segregated list are equal or larger than that requested, any
block (and in particular the first block) of the list can be used to serve the request.
Also, both allocators use bitmaps to find the suitable segregated list in constant time.
One difference between them is the number of segregated lists. Half-fit uses a one-
level array of 32 segregated lists, while TLSF can use up to 1024 segregated lists,
arranged in a 32 × 32 matrix, which drastically reduces the amount of memory used.

The policy used to search for a suitable free block in Half-fit and TLSF introduces
a new type of fragmentation or incomplete memory use as it is called in Ogasawara
(1995): free blocks larger than the base size of the segregated list where they are
located, will not be used to serve requests of sizes that are one byte larger than the
base size. For example, in the case of the Half-fit, if the size of the largest free block is
214 −1 = 16383, then any request to allocate a block larger than 213 +1 = 8193 bytes
will fail. The worst case is given by: (2i+1 − 1) − (2i + 1) � 2i , when r ∈ [2i ,2i+1[,
which represents 50% of the requested size.

This problem (the existence of free blocks of the requested size that cannot be
found due to the search policy) may happen quite often. Suppose the following allo-
cation sequence: 40,12,40,12,40,12,40,12; then blocks of size 40 are freed; after
that, the next allocation of a block of size 40 cannot reuse any of the already existing
40 byte free blocks, because they are in the “wrong” list. Any free block whose size
is not a power of two can not be reused to serve a request of the same size. TLSF
solves this problem using two policies:
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Fig. 2 Incomplete memory use problem

1. There are more segregated lists (the second level can be configured to hold up to
32 lists, which gives a total of 1024 segregated lists), therefore the gap between
segregated lists is much smaller, and so, the fragmentation is (2i+1/32 − 1) −
(2i + 1) � 2i/32 which gives a fragmentation of � 3%.

2. Round-up the requested size to the next segregated list size. This way, when a
block becomes free it will be placed on a list where it can be found later for a same
size request. This policy converts the original problem (incomplete memory use)
into a classical “internal fragmentation” problem. The worst-case fragmentation
occurs when a request size is one byte bigger than an existing segregated list, and
has to be rounded-up to the next list: (2i+1/32) − (2i + 1) � 2i/32; which gives a
fragmentation of � 3%.

Note that wasted memory due to internal fragmentation and incomplete memory
usage cannot occur at the same time on the same block. If a block has internal frag-
mentation, it is because it is already allocated; and a block can cause incomplete
memory usage only if it is a free block. Therefore, the overall “non-external” frag-
mentation of the TLSF is 3%.

Since both allocators, Half-fit and TLSF, are based on a Good-fit policy, both
exhibit a similar external fragmentation.

In Sect. 8.3 we provide an experimental evaluation of the fragmentation generated
by all tested allocators under different loads.

6 Evaluation issues

In this analysis we compare the performance of TLSF with respect to other allocators
under different conditions. To evaluate the performance, several approaches may be
considered including complexity analysis, simulation, and final implementation.8

Since it is not possible to compare all the existing DSA algorithms as there are
simply too many, a few of the most representative algorithms have been selected.
The chosen allocators were: First-fit (sequential fits), Best-fit (sequential fits), AVL

8We use the term final implementation to refer to a real and usable implementation of the allocators.
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tree (indexed fits), Binary-buddy (buddy systems), DLmalloc (hybrid algorithm using
segregated and sequential system)9 and Half-fit.

The workload that drives a simulation or a final implementation can be obtained
in two ways:

– Using real workloads, which allow to evaluate the algorithm in real situations.
Most of the research results on dynamic allocation have been obtained by using
well known programs such as compilers (gcc, perl, etc.) or application programs
(cfrac, espresso, etc.) as real workloads due to their intensive use of dynamic mem-
ory. However, real-time requirements have not been considered because of a lack
of examples of use (the use of dynamic memory has usually been considered inap-
propriate for this kind of applications).

– Using synthetic workloads by extracting and modelling the events from a program
at run time or by generating events randomly based on a probabilistic model.

In general, real workloads are more accurate than synthetic workloads, which are
generated using simplifying assumptions. Several models have been proposed (Zorn
and Grunwald 1994) considering different parameters such as holding time, size or
inter-arrival time of dynamic memory requests. Each model defines statistical char-
acterisations of these parameters that attempt to accurately reconstruct the program
behaviour. Also, synthetic workloads can be used to reproduce particular situations
that require detailed analysis, for example worst-case situations.

A second evaluation issue is the performance metrics used for the evaluation. The
following metrics have been used in our analysis:

Execution time: Time measurement of allocation and deallocation operations. For
the execution time, three measures can be considered:

1. Average execution time: this is the key parameter for non real-time applications.
2. Worst-case execution time: this is the most important performance parameter for

real-time applications and provides information of the maximum time required
to serve a request. This corresponds to the execution time in the worst-case sce-
nario.

3. Standard deviation: provides information about the execution time variability or
stability of the allocator when working under different conditions.

However, exact, or even approximate, time measurement of a piece of code in cur-
rent processors is not an easy task (Puschner and Burns 2000). Current processors
have been designed to improve throughput (average execution speed) at any cost.
The techniques used to speed-up program execution (such as instruction reorder-
ing, jump prediction, pipelined units, cache memory levels, etc.) increase the worst-
case execution time, and may introduce a large interference in the execution time
of single instructions. Also the evaluation environment plays an important role in
the measurement process. In order to reduce the uncertainty in the execution time
measurement, ad-hoc frameworks, described in Sect. 6.2, will be used.

9The version used in the comparison is 2.7.2.
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Number of instructions: An alternative measure of the cost of an algorithm is the
number of processor instructions executed. This metric is only sensitive to the
processor instruction set and the compiler optimisation flags. The same program,
compiled once and run in different processor implementations (e.g. Pentium, K7,
Via or C3), will execute the same number of instructions. Also, a given algorithm
fed twice with the same input will execute the same number of instructions in both
cases.
Counting instructions provides results that should be close to those obtained with an
analytical study.
It is important to point out that although on RISC processors the number of instruc-
tions executed may be a value close to, or related to, the time required to execute
them, this is no longer valid on CISC processors due to the variation in the num-
ber of CPU cycles required by different instructions. Also, different algorithms may
use a different mixture of instructions or even special instructions not used by other
algorithms. For these reasons, instruction counting should be used only to compare
how each allocator performs under a different workload. It cannot be meaningfully
used to compare different allocators.

Fragmentation: As was described in Sect. 4.2, a way to measure the spatial ef-
ficiency of an allocator is to determine the factor F as: the maximum amount of
memory used by the allocator relative to the maximum amount of allocated mem-
ory. These two points do not necessarily occur at the same point during the program
execution. For example, a value of factor F = 10% means that the allocator needs
10% more of memory to satisfy the memory requests than the amount of total al-
located memory. So, if the total amount of memory requested is 5.600 Kb the total
memory needed to satisfy these requests will be 6.160 Kb.

In this work we have used real workloads to determine the average time, standard
deviation and memory fragmentation of the allocators; and synthetic workloads to
build worst-case scenarios. For real-time systems, it is mandatory to evaluate the
performance in the worst situation. It is also relevant to know how each allocator
behaves compared to the others. Analysing each algorithm under its own worst-case
scenario is very relevant for real-time systems. Comparing it under the worst-case
scenarios of the others could be not necessary because it does not provide relevant
information of the allocator. However, we have included it in order to confirm the
expected results.

6.1 Evaluation methodology

In order to obtain the foregoing metrics, the following steps have been carried out:

– Worst-case execution time (WCET) and number of instructions measurement:
• A worst-case scenario for each tested algorithm has been identified (Sect. 7.1).
• A synthetic load modelling each worst-case scenario has been implemented.
• Each allocator has been tested against all the worst-case scenarios.

– Average and standard deviation of execution time and fragmentation:
• Several programs commonly used for evaluation purposes have been selected

(Sect. 7.2).
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• Several tests using each program under different conditions have been designed.
• For each test, all allocators are evaluated.
• Average execution times have been measured and standard deviations calcu-

lated. The maximum fragmentation incurred by each allocator has also been
calculated.

6.2 Evaluation framework

We consider the evaluation framework as the environment (operating system and user
programs) used to evaluate the allocators under different conditions.

This framework plays an important role in obtaining reliable and reproducible ex-
periments. Simulation-based frameworks are reproducible, but it is difficult to take all
the aspects of real hardware into account (pipelining, caching, etc.). We consider that
we can obtain reliable and reproducible results by using controlled real environments.
Two different frameworks were used to obtain the metrics:

Minimal execution layer: A minimal layer (μlayer) was built using the following
off-the-shelf software components to execute the tests on a bare machine for worst-
case execution time and number of instruction measurements. The functionality pro-
vided by μlayer is: simple string handling and mathematical functions; hardware
control operations (interrupt handling, cache flush, time counting); and instruction
counting using the processor tracing exception. Each test is executed immediately
after a machine boot; therefore the system is in exactly the same initial state for all
the tests. Once the scenario for the worst case has been set up, the cache is flushed
and invalidated.

Minimal operating system: A minimal environment based on Linux has been used
to obtain average execution time and fragmentation. The Linux Knoppix 4.0.2 dis-
tribution has been used to run the real workload. To minimise the interference of
other processes, tests were performed while the system was at runlevel 1 (single
user without network), and physically disconnected from the network to avoid un-
desired hardware interrupts.Cache blocks were flushed before running each test.

The system call ptrace() can be used to count the number of instructions. How-
ever, using ptrace() introduces a considerable overhead so that experiments using
real workloads could last several months. Additionally, the results obtained provide
less information about how the allocator behaves compared to others. Instead, we
used the evaluation of the number of instructions only for worst-case scenarios of
each allocator.

All measurements were obtained on an Intel® PIII(Coppermine) 803 Mhz with
256 Mb of main memory and 256 Kb cache memory. GCC 3.3.6 compiler with “-O2
-fomit-frame-pointer” flags. Processor caches are not disabled, although invalidated
on the worst-case tests.

7 Workload selection

Two different workloads have been used: synthetic workload to create worst-case sce-
narios and fragmentation evaluation, and real workload to compare average execution
times.
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7.1 Worst-case allocation scenarios

Although our intention was to find the worst-case scenario for each allocator, demon-
strating that the described scenario causes the worst execution time is not always
possible and is outside the scope of this work. Worst-case (WC) scenarios are used
when possible and bad-case10 (BdC) scenarios otherwise. A more detailed descrip-
tion of the worst-case allocation and deallocation of some of these allocators can be
found in Puaut (2002).

First-fit/Best-fit

Allocation WC: The longest time required to allocate a block occurs when the free
list has the longest length and the required block is located at the end of the free list.
The list can be constructed by requesting blocks of minimum size until the heap
is exhausted, then release two adjacent blocks (which will form a bigger block)
and also release the remaining odd allocated blocks (which will be inserted at the
head). The length of the list will be O( H

2M ).
Deallocation WC: The deallocation operation only coalesces with neighbours, if

any, and the free block is inserted in the head of the unique free list. Hence, the
worst-case is when the released block is surrounded by two free blocks (left and
right physical neighbours). The cost is O(1).

Binary-buddy

Allocation WC: The worst-case scenario for Binary-buddy occurs on the very first
request when this is of minimum size. In this case, the allocator has to split the
initial free block several times in power of two until a block of the required size is
obtained. The number of operations (block splits) required is O(log2(

H
M )).

Deallocation WC: The worst-case deallocation is symmetrical to the worst-case
allocation. When only one single block of minimum size has been allocated and
this block is released. All the lists have to be merged to rebuild the original heap
block. The cost is O(log2(

H
M )).

AVL-tree

Allocation BdC: There are several operations that contribute to the temporal cost
of the allocator:

1. Search and remove a suitable block: O(1.44 log2(
H

M ))

2. Insert the remaining block (if the block found is bigger than that requested), and
re-balance the tree:

O(1.44 log2(
H

M ))

It is not simple to find the worst-case scenario due to the highly dynamic behaviour
of the AVL data structure. The proposed bad-case scenario is: build the tallest AVL
tree and request a block which can only be served using a leaf block. The requested
block size will be such that a split will be needed.

10A bad-case may be the worst-case, but it has not been proved.
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Table 1 Allocation and
deallocation worst-case costs Allocation Deallocation

First-fit/Best-fit O( H
2M ) O(1)

Binary-buddy O(log2( H
M )) O(log2( H

M ))

AVL-tree O(1.44 log2( H
M )) O(3 · 1.44 log2( H

M ))

DLmalloc O( H
M ) O(1)

Half-fit O(1) O(1)

TLSF O(1) O(1)

Deallocation WC: The following bad-case scenario was designed and used: in the
tallest tree (the tree that stores as many different block sizes as possible), a block
is released that has to be coalesced with two neighbours and has to be inserted in
the longest branch (the biggest free block). The cost is O(3 · 1.44 log2(

H
M )).

DLmalloc

Allocation BdC: The proposed bad-case scenario tries to exploit the overhead pro-
duced by delayed coalescing. An extreme case occurs when all the heap has been
allocated requesting minimum size blocks and then all the blocks have been re-
leased. This produces the longest free list that will be coalesced on the next malloc
request.
The number of free blocks that are coalesced is H

M . The resulting asymptotic com-

plexity is: O( H
M ).

Deallocation WC: Since DLmalloc delays coalescing, the free operation is quite
fast, and has no clear worst-case path. Any free operation has a similar cost. The
cost is O(1).

Half-fit & TLSF
Both allocators implement the same strategy, therefore the worst-case scenarios are
the same:

Allocation WC: Since this operation does not depend on the number of free or busy
blocks and there are no loops in the code, only small variations in the execution
time can be observed depending on the conditional code executed. The worst-case
for malloc occurs when there is only one large free block and the application re-
quests a small block. The asymptotic cost is O(1).

Deallocation WC: There are only three possible cases: (1) no free neighbours;
(2) one neighbour; (3) two neighbours. The worst-case is when the two neigh-
bours are free so that the allocator has to coalesce with both blocks. The cost is
O(1).

Table 1 summarises the costs of the worst-case allocation and deallocation of the
algorithms.

7.2 Real workload

In order to obtain comparable results, we have selected the same workload as previous
allocator evaluation studies. Zorn and Grunwald (1994) presented an evaluation of
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synthetic workload used to test allocators based on real applications. They proposed a
set of synthetic models and compared their accuracy with respect to the real workload.
Since then, many studies have used their synthetic models or even the real workload
they used in their experiments.

We have used a subset of the programs used in Zorn and Grunwald’s seminal
paper.11

CFRAC: CFRAC is a program to factor integers using the continued fraction
method.

Espresso 2.3: Espresso is a program which performs logic circuit simplifications.
GAWK 3.1.3: Gnu AWK is a free implementation of the AWK scripting language

for string manipulation.
GS 7.07.1: GhostScript is a free PostScript and PDF language interpreter and pre-

viewer.
Perl 5.8.4: Perl is an interpreted programming language known for its power and

flexibility.

Zorn and Grunwald’s paper defines several tests per program, depending on the
input used to feed them. All the tests used in this work are described in the Appendix.

8 Evaluation results

In this section, we compare the results of the selected allocators using the metrics
and the frameworks described in Sect. 6. We begin by detailing the results obtained
for worst-case execution times and number of instructions. Next, we compare the
statistical results when standard programs are used.

8.1 Results on WCET and number of instructions

WCET and number of instructions are evaluated using specific workloads designed
to force each allocator to its worst-case scenario and measuring both metrics in this
situation.

The test framework used was the μlayer. The memory heap size was set to
4 Mbytes, and the minimum block size is 16 bytes.

Tables 2 (processor instructions) and 3 (processor cycles) show measurements of
a single malloc operation after the worst-case scenario has been constructed, as de-
scribed in Sect. 7.1. Every allocator has been tested for each worst-case scenario.
The result of an allocator when tested in its worst-case scenario is printed in bold
face in the tables. The results show that each allocator performs badly in its theoreti-
cal worst-case scenarios.

As expected, First-fit and Best-fit perform quite badly under their worst-case sce-
narios. The low data locality produces a high cache miss ratio which makes the tem-
poral execution even worse than expected, considering the number of instructions

11All the code can be downloaded from ftp.cs.colorado.edu/pub/cs/misc/malloc-benchmarks.

http://ftp.cs.colorado.edu/pub/cs/misc/malloc-benchmarks
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Table 2 Worst-case (WC) and Bad-case (BdC) allocation: Processor instructions

Malloc FF BF BB DL AVL HF TLSF

FF WC 81995 98385 115 109 699 162 197

BB WC 86 94 1403 729 353 162 188

DL BdC 88 96 1113 721108 353 164 197

AVL BdC 5085 6093 252 56093 3116 162 197

TLSF WC 88 96 1287 729 3053 164 197

Table 3 Worst-case (WC) and Bad-case (BdC) allocation: Processor cycles

Malloc FF BF BB DL AVL HF TLSF

FF WC 1613263 1587552 1445 1830 6471 1633 2231

BB WC 1168 1073 3898 4070 3580 1425 2388

DL BdC 1203 1227 3208 3313253 3844 1651 2251

AVL BdC 105835 101497 1703 132161 11739 1629 2149

TLSF WC 1168 1074 3730 4124 3580 1690 2448

executed. The number of cycles per instruction (CPI) is high: 19 for First-fit and 16
for Best-fit.

It is interesting to note that although the TLSF and Half-fit have a high data locality
they also have a high CPI ratio (around 12). This is due to two factors: first the use
of arithmetic and logical operations to directly find a suitable block; and second, the
complex data structure used to organise the segregated lists. The same test executed
without invalidating processor caches takes less than 150 CPU cycles. First-fit does
not benefit from non-invalidating the memory caches. In any case, the CPI is quite
stable and depends mostly on the processor design12 rather than data distribution.

The AVL bad-case scenario, which generates a large number of blocks of different
sizes, is also a bad scenario for most allocators; only Binary-buddy, Half-fit and TLSF
perform properly. This is due to the fact that the cost of many allocators depends on
the number of free blocks as well as the number of different sizes.

The DLmalloc allocator is a good example of an algorithm designed to optimise
the average execution time, but it has a very long execution time in some cases.
DLmalloc tries to reduce the time spent coalescing blocks by delaying coalescing
as long as possible; and when more space is needed coalescing is done all at once,
causing a large overhead on that single request. DLmalloc has the largest execution
time of all allocators, and therefore it is not advisable to use in real-time systems.

Half-fit, TLSF, Binary-buddy and AVL show a reasonably low allocation cost,
Half-fit and TLSF being the ones which show the most uniform response time, both
in number of instructions and time. Half-fit shows the best worst-case execution time;
only TLSF is 20% slower. Although Half-fit shows a fast and bounded execution time
under all tests, it wastes a lot of memory due to the incomplete memory use caused

12Intel® processors show better CPI ratio than AMD® in these experiments.
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Table 4 Worst-case (WC) and Bad-case (BdC) deallocation

Malloc FF BF BB DL AVL HF TLSF

Processor Instructions 115 115 1379 51 1496 169 187

Processor cycles 1241 1289 4774 955 7947 1443 2151

by the search policy (see Sects. 4.2 and 8.3), which makes this allocator inappropriate
for many applications.

On the other hand though the AVL cost bound is not as good as TLSF, the practical
bound is acceptable for most applications (logarithmic with respect to the heap size);
in addition, since AVL implements a Best-fit policy and allocated block size is always
the requested size, it has neither internal fragmentation nor incomplete memory use.

As explained in the fragmentation section, Half-fit provides a very good worst-
case execution time at the expense of wasting memory. Half-fit is superior in all
respects to Binary-buddy. Half-fit is faster than Binary-buddy and handles memory
more efficiently.

Although a more detailed fragmentation analysis still has to be performed, TLSF
achieves a good compromise between a constant allocation time and efficient memory
management.

Table 4 summarises the number of instructions and processor cycles required by
the free operation. Almost all allocators show a uniform deallocation cost. For this
reason, this table shows only the results of each allocator in its deallocation worst-
case.

All allocators except AVL and Binary-buddy do not perform any kind of search
(the code does not contain loops), they just update some links if the neighbours are
free. Binary-buddy has to coalesce up to log2(H) blocks, so its cost is higher. AVL
performs poorly due to the fact that the removal operation (the neighbours that have
been coalesced) on an AVL tree has a non negligible cost. A free operation may
require, in the worst-case, 2 removals and one insertion.

8.2 Average execution time and standard deviation results

In order to determine the behaviour of the TLSF allocator in real conditions and com-
pare it against the others, we evaluated all allocators using real programs under the
general-purpose framework described in Sect. 6.2. The tests used for each program
are detailed in Appendix.

Tables 5 to 9 show the average time for malloc and free and the standard devi-
ations, measured in processor cycles. The results have been rounded to the nearest
integer.

The behaviour of the application (sequence of malloc and free operations) has a
great impact on the performance of the allocator. It is not easy to model or describe
in a simple way how an application uses dynamic memory. Moreover, a small change
in the malloc/free request sequence may have a large impact on the allocator’s per-
formance. For example, in the case of segregated fits, if the requested sizes are not
the same as at the start of the corresponding segregated lists then the allocator has to
do more work to find a suitable block.



170 Real-Time Syst (2008) 40: 149–179

Table 5 CFRAC memory allocation & deallocation (processor cycles)

Malloc/Free FF BF BB DL AVL HF TLSF

Test 1 avg. 94/65 96/65 1131/114 90/30 512/335 107/143 231/204

Std. dev. 40/38 47/36 7843/49 127/16 703/244 121/210 451/305

Test 2 avg. 131/69 138/69 265/145 120/24 750/603 108/98 146/116

Std. dev. 520/32 511/30 1904/98 442/18 810/385 69/50 87/85

Test 3 avg. 129/72 142/75 254/153 115/25 780/762 114/116 149/121

Std. dev. 505/32 518/32 1705/106 423/8 867/478 68/55 102/87

Test 4 avg. 132/87 144/89 241/182 108/24 503/801 114/118 158/121

Std. dev. 486/41 519/44 1202/107 440/15 931/497 61/43 85/57

Test 5 avg. 139/105 158/106 247/195 117/27 536/955 126/132 176/134

Std. dev. 529/58 594/56 1080/110 510/22 930/573 85/55 106/52

Table 6 Espresso memory allocation & deallocation (processor cycles)

Malloc/Free FF BF BB DL AVL HF TLSF

Test 1 avg. 77/73 132/70 131/132 88/25 1132/683 80/104 126/108

Std. dev. 124/29 109/32 440/89 319/10 373/468 20/38 36/47

Test 2 avg. 73/73 158/69 130/138 85/25 1144/709 79/104 123/108

Std. dev. 74/30 76/32 288/92 262/9 339/505 15/35 30/47

Test 3 avg. 74/69 196/60 128/128 110/26 1305/708 78/98 114/95

Std. dev. 105/27 111/29 268/84 845/11 448/556 12/32 31/42

Test 4 avg. 74/71 201/71 128/136 93/24 1242/624 78/102 122/105

Std. dev. 56/27 75/30 121/92 905/8 356/505 12/33 20/41

Table 7 GAWK memory allocation & deallocation (processor cycles)

Malloc/Free FF BF BB DL AVL HF TLSF

Test 1 avg. 136/64 160/59 213/112 131/28 1081/424 81/109 120/92

Std. dev. 659/38 609/41 1506/80 641/16 1388/373 38/48 62/58

Test 2 avg. 77/80 165/58 103/97 132/28 1161/810 88/115 124/101

Std. dev. 36/34 65/31 78/55 249/13 422/461 15/36 34/49

Test 3 avg. 77/79 161/56 103/98 130/27 1148/806 89/115 123/99

Std. dev. 25/33 64/30 66/58 247/13 423/455 14/36 35/47

Among other factors, the following request patterns are relevant: the amount of
different block sizes requested; the size of the blocks; how many requests of different
sizes are interleaved (some programs use a large range of block sizes but in bursts of



Real-Time Syst (2008) 40: 149–179 171

Table 8 GS (GhostScript) memory allocation & deallocation (processor cycles)

Malloc/Free FF BF BB DL AVL HF TLSF

Test 1 avg. 1857/170 1834/148 1554/241 2042/131 3312/693 227/170 685/413

Std. dev. 3031/277 2933/214 4827/232 2970/190 3041/965 189/202 964/693

Test 2 avg. 196/196 389/286 345/301 801/143 2483/1799 343/322 344/302

Std. dev. 486/166 512/286 622/217 882/127 1558/979 301/298 245/207

Test 3 avg. 1918/192 1849/184 1130/321 1903/128 3788/568 214/176 419/257

Std. dev. 3278/372 2997/323 3395/377 3206/211 3827/919 182/257 533/454

Table 9 Perl memory allocation & deallocation (processor cycles)

Malloc/Free FF BF BB DL AVL HF TLSF

Test 1 avg. 350/119 263/95 372/156 237/34 981/669 95/125 149/141

Std. dev. 1900/149 1000/61 2376/115 970/34 1381/501 52/59 96/106

Test 2 avg. 126/132 170/105 192/146 81/60 1593/813 99/126 218/180

Std. dev. 363/65 352/54 761/84 403/66 758/485 29/47 164/157

Test 3 avg. 83/82 131/65 111/111 34/24 1353/647 87/114 109/82

Std. dev. 81/26 86/35 167/54 79/6 465/449 19/29 51/52

Test 4 avg. 83/91 135/58 112/112 33/24 1338/640 76/92 123/100

Std. dev. 52/30 56/32 108/55 51/6 487/435 16/27 42/48

Fig. 3 Memory size histogram

similar size blocks); the number of free operations (some applications only release a
small amount of memory during run-time and release all memory on exit); the life
time of allocated blocks (that is, the time between requesting and releasing a given
block); etc.

Espresso, CFRAC and GAWK behave similarly with respect to the sizes of re-
quested blocks; all of them make intensive use of small blocks. GhostScript (GS)
exhibits a different size pattern (see Fig. 3), it allocates a wider range of block sizes
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and only a few of them are small blocks. GhostScript tests were the most demanding
tests for all the allocators, including TLSF and Half-fit. But while most allocators
suffer significant performance loss (DLmalloc required 22 times more time than with
other workloads; Binary-buddy 15 times; First-fit 10; AVL 8), the execution time
of TLSF and Half-fit is only 2 or 3 times worse than with other workloads, which
confirms their stability under very differently behaved workloads.

Regarding deallocation time, DLmalloc is unbeatable since it does not coalesce
blocks. On the opposite side, AVL has a large deallocation cost. Coalescing blocks
on AVL, Binary-buddy, Half-fit and TLSF, may require up to two block removals and
one insertion if both neighbours are free. DLmalloc just inserts the free block in the
head of a list.

When considering the combined cost of allocating and releasing memory, DLmal-
loc shows the best average execution time, but with the GhostScript workload Half-fit
is better.

8.3 Fragmentation results

In order to analyse the fragmentation generated by each allocator in real conditions,
and according to the description in Sect. 7.2, we shall calculate the maximum amount
of memory used by each allocator relative to the maximum amount of memory re-
quested by the application (See the description of Maximum heap size metric on
Sect. 6).

For the sake of brevity, Table 10 summarises the results of only the last tests of
each tested program. The last tests are the ones that make more allocation/deallo-
cation requests, and so the results are more representative. Note that a distinctive
characteristic of real-time applications is that they run over a very long time.

Before we present the results, it is important to remind that First-fit, Best-fit and
DLmalloc have shown unappropriate for real-time applications due to their worst-
case temporal bound. Therefore, the most interesting results are those of Binary-
buddy, AVL, Half-fit and TLSF.

The allocators that show the best results are Best Fit, AVL, DLmalloc and TLSF
which are at a far distance from the rest that produce twice as much fragmentation
at least. These results confirm that the policies implemented by TSLF (see Sect. 4.2,
p. 161) fulfil the low fragmentation requirement.

It is interesting to note the very large difference between the theoretical and the
observed worst-case fragmentation with real workload. The same results have been
observed in all fragmentation studies since Robson (1977).

Table 10 Fragmentation results

FF BF BB DL AVL HF TLSF

Espresso Test 4 67.4% 7.1% 88.7% 7.3% 7.5% 17.4% 8.0%

Cfrac Test 5 92.3% 32.1% 89.8% 34.6% 33.1% 81.5% 38.0%

Gawk Test 3 61.2% 7.5% 44.5% 7.5% 7.9% 26.2% 9.1%

Gs Test 3 12.5% 0.3% 26.8% 0.3% 0.3% 1.1% 0.4%

Perl Test 4 16.5% 8.9% 34.4% 9.3% 9.0% 21.2% 10.3%
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9 Case study

In this section we present a case study based on the analysis of a router. Whereas the
execution time of the allocators could be analysed in detail in the previous sections,
the fragmentation is strongly dependent on the memory requests. In this case study,
the analysis is focused on the fragmentation incurred by all allocators when real traces
are used.

Roughly speaking, a router is a network device which links together different net-
work segments. When a network receives a packet from one network segment, it ex-
tracts its destination, selects the best path to that destination, and forwards the packet
to the most suitable network segment.

Current routers present many of the characteristics needed by any embedded real-
time system: run for long periods of time and have response time and latencies con-
straints. Incoming messages (packets) are stored in the main memory waiting to be
sent by the appropriate output channel. Most of the router software uses fair schedul-
ing policies (Ni and Bhuyan 2002) by allowing the same amount of data to be moved
and sent from each internal queue. In fact, variations of this scheduling algorithm
are used by Cisco for commercial access points products and by Infineon in its new
broadband access devices.

There exist several tools to simulate network systems (NS-2, OPNET, etc). Most
of the implementations analyse packet latencies and traffic. However, they can also
be used to assess the memory used by a dynamic memory allocator. By using these
tools, we have modelled a standard router including additional features to detect the
arrival of a packet (malloc operation) and its transfer (free operation) to the output
channel.

In this case study, we have assumed that all dynamic memory request are allocated
in a unique memory heap. Each output channel has a queue of references to packets
allocated in the heap.

In order to perform the analysis, the router is fed with 20 real traces with traffic up
to 10 Mbit/sec (LBNLab 2000). Each trace collects daily Internet traffic containing
between 280.000 and 1 million of packets.

Figure 4 plots a histogram of one of the traces. Additionally, Fig. 5 displays the
evolution of each allocator under this trace. The plot labelled Memory Allocated
represents the temporal evolution of the packets (in bytes) allocated in the router
memory (live memory). The other plots (TLSF, DLmalloc, . . .) show the maximum
amount of memory (maximum memory address) needed by each allocator to serve
this amount of memory. Fragmentation, as detailed before, is calculated as the per-
centage of the maximum live memory with respect to the maximum memory needed
at any time.

Table 11 shows the summary of the results obtained. For each test (trace) we mea-
sure the fragmentation of each allocator. Average and Std dev correspond to the av-
erage fragmentation obtained by all tests and the standard deviation. Maximum and
Minimum detail, respectively, the maximum and minimum fragmentation test mea-
sured.

As expected, the best results are obtained by DLmalloc and TLSF. Both allocators
achieve very small fragmentation in all traces. Also the maximum fragmentations
are very close. On the opposite side, Binary-buddy and Half-fit allocators produce
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Fig. 4 Packet size histogram

Fig. 5 Evolution of the memory required by each allocator

high fragmentation. Also, it has to be considered that the Internet traces have a strong
constraint in size (packets have a maximum size of 1500 bytes), which clearly benefits
to DLmalloc which uses different policies depending on the size requested.
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Table 11 Router case study:
Fragmentation results (in %) Average Std. dev. Maximum Minimum

FF 38.94 7.08 48.84 31.61

BF 7.18 2.31 16.18 4.71

BB 50.26 8.32 81.77 44.13

DL 6.38 1.84 11.98 3.32

AVL 8.23 2.65 19.21 6.29

HF 78.85 6.79 97.74 68.26

TLSF 6.78 2.05 13.03 5.16

10 Conclusions and future lines of investigation

TLSF is a dynamic storage allocator designed to meet real-time requirements. This
paper has focused on comparing TLSF timing performance, both in worst-case and
average execution time, with other well-known existing allocators (First/Best Fit,
Binary-buddy, DLmalloc, Half-fit and AVL). Two different types of workload were
used:

1. Worst-case scenario: A set of synthetic workload was designed to bring each al-
locator to its worst-case state. After the scenario is achieved, a malloc (or free)
operation is issued and the execution time and number of processor instructions
required to execute it are reported. These tests provide real measures of the WCET
which complement the analytical cost analysis.

2. Real workload: This second type of tests provides information on the behaviour
of the allocators in real situations. We have used the workload proposed by Zorn
and Grunwald (1994) which has also been used by other authors.

Additionally, a case study of a simulated router using real Internet traces has com-
pleted the allocator analysis.

TLSF and Half-fit exhibit a stable, bounded execution time, which make them suit-
able for real-time applications. The bounded execution time of TLSF is not achieved
at the cost of wasted memory, as is the case with Half-fit. Besides a bounded execu-
tion time, a good average execution time is also achieved with some real workload.

Our analysis also shows that allocators designed to optimise average execution
time by considering the usage pattern of conventional applications, such as DLmal-
loc, cannot be used in real-time systems.

We have considered real applications as black boxes. Nonetheless, most appli-
cations (and real-time applications in particular) can be split up into three phases
attending the allocation pattern: (1) start-up: buffers and data structures are allocated
and initialised; (2) stable phase: the application continuously provides the intended
services; and (3) shutdown: memory is released and application exits. Since real-time
applications are long running and the start-up and the shutdown are usually done dur-
ing the non-critical phase of the system, the analysis should be focused on the stable
phase.

An allocator must fulfil two requirements in order to be used in real-time systems:
(1) it must have a bounded execution time, so that schedulability analysis can be



176 Real-Time Syst (2008) 40: 149–179

performed; (2) it must cause low fragmentation. It will also be desirable to have some
kind of worst-case fragmentation analysis, similar to those used in schedulability
analysis of tasks in real-time systems. The first aspect has been tackled in this work,
while the second one is still a challenge.

Several lines of research have been opened from this work:

New features of the allocator: Region aware allocation: managing areas, or regions
of memory, differently according on the kind of objects allocated. Dynamic pool
resizing: been able to adapt the memory pool to the system needs.

Task model: While there exists a complete and consolidated model for the tempo-
ral requirements of real-time applications, the memory parameters that describe task
behaviour are far from being well-defined and understood. In Feizabadi et al. (2005),
it is considered the maximum amount of memory that can be allocated per task. In
the Real-Time Specification for Java (Bollella and Gosling 2000), the model con-
siders a limit on the rate of allocation in the memory pool. A more general model
including techniques to analyse the system is desirable. Also, the specific charac-
teristics of real-time applications should be considered, including: periodic request
patterns, limited amount of allocated memory per task, bounded holding time, etc.

Resource management: Memory can be considered another resource in a real-time
system, such as CPU or network are. Whereas there are well known schedulability
techniques to analyse these resources, further research is still needed to develop
memory analysis techniques enabling to guarantee the use of dynamic memory in
realtime applications.

Appendix: Real-workload description

This appendix describes all the tests mentioned in Sect. 7.2.

CFRAC: in each test a number is factorised into two prime numbers. As can be seen
in the code the complexity of the operation grows after each test.

Test 1: 23533.
Test 2: 1000000001930000000057.
Test 3: 327905606740421458831903.
Test 4: 4175764634412486014593803028771.
Test 5: 41757646344123832613190542166099121.

Espresso: in each test a combinational circuit is optimised, the only difference be-
tween them being the number of inputs and outputs used.

Test 1: 7 inputs and 10 outputs.
Test 2: 8 inputs and 8 outputs.
Test 3: 24 inputs and 109 outputs.
Test 4: 16 inputs and 40 outputs.
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GAWK:

Test 1: Processing of a short text to create a checksum.
Test 2: Processing of a short text to fill the lines of the text.
Test 3: Processing of a big text to fill the lines of the text.

GS:

Test 1: Processing a single page including two graphics.
Test 2: Processing of the GNU C++ user guide.
Test 3: Processing of the SELF language manual.

Perl:

Test 1: Script that sorts the whole content of a small file regarding a given key.
Test 2: Script that translates a “/etc/hosts” file from the unixops format to the CS

one.
Test 3: Processing of a short text to fill the lines of the text.
Test 4: Processing of a long text to fill the lines of the text.
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